Aller au contenu

Mathc initiation/c77d

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c01d.c
/* ------------------------------------ */
/*  Save as :   c01d.c                  */
/* ------------------------------------ */
#include "x_hfile.h"
#include       "fa.h"
/* ------------------------------------ */
int main(void)
{
double i;

 clrscrn();
 printf(" The curve y = ax**2 + bx + c     (a!=0)       \n\n\n" 
        " is a branch of the curve of f at +oo if     \n\n\n\n" 
        "                 lim    f(x)                       \n" 
        "                 x->+oo ----  = a                  \n" 
        "                        x**2                   \n\n\n" 
        "                 lim    [f(x)-ax**2]               \n" 
        "          and    x->+oo ---------   = b            \n" 
        "                            x                  \n\n\n" 
        "                 lim    [f(x)-ax**2-bx] = c        \n" 
        "          and    x->+oo                        \n\n\n"); 
 stop();


 clrscrn();
 printf(" f : x-> %s\n\n\n", feq);
 printf(" Compute :   lim   [f(x)-ax**2-bx] = c   (with a=1 b=0) \n");
 printf("             x->+oo                      \n\n\n");

 for(i=1; i<10; i+=1)
 
     printf(" L3(%.0e) = %-10.0e  || L3(%.0e) = %.2e\n",
             i*100,   fc(i*100),
             i*10000, fc(i*10000) );
             
          
 printf(" \n\n"
        "With the computation we arrive at the "
        "following conjecture :  c = %+.1f  \n\n", 
          fc(i*10000)); 
 
 stop();

 return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Exemple de sortie écran :

 The curve y = ax**2 + bx + c     (a!=0)       


 is a branch of the curve of f at +oo if     



                 lim    f(x)                       
                 x->+oo ----  = a                  
                        x**2                   


                 lim    [f(x)-ax**2]               
          and    x->+oo ---------   = b            
                            x                  


                 lim    [f(x)-ax**2-bx] = c        
          and    x->+oo                        


 Press return to continue. 


**************************


 f : x-> ((x**6+x**4)/(x**4-x-1)) + 10*x


 Compute :   lim   [f(x)-ax**2-bx] = c   (with a=1 b=0) 
             x->+oo                      


 L3(1e+02) = 1e+00       || L3(1e+04) = 1.00e+00
 L3(2e+02) = 1e+00       || L3(2e+04) = 1.00e+00
 L3(3e+02) = 1e+00       || L3(3e+04) = 1.00e+00
 L3(4e+02) = 1e+00       || L3(4e+04) = 1.00e+00
 L3(5e+02) = 1e+00       || L3(5e+04) = 1.00e+00
 L3(6e+02) = 1e+00       || L3(6e+04) = 1.00e+00
 L3(7e+02) = 1e+00       || L3(7e+04) = 1.00e+00
 L3(8e+02) = 1e+00       || L3(8e+04) = 1.00e+00
 L3(9e+02) = 1e+00       || L3(9e+04) = 1.00e+00
 

With the computation we arrive at the following conjecture :  c = +1.0  

 Press return to continue.