Aller au contenu

Mathc initiation/a148

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00g.c
/* ---------------------------------- */
/* save as c00g.c                     */
/* ---------------------------------- */
#include  "x_hfile.h"
#include       "fg.h"
/* ---------------------------------- */
int main(void)
{
double t = 4;

 clrscrn();
 printf(" The position vector of a moving point at time t is  \n\n"
        " r(t) = f(t)i + g(t)j + h(t)k \n\n"
        " With \n\n"
        " f : t-> %s  \n"
        " g : t-> %s  \n"
        " h : t-> %s\n\n"
        " t = %+.2f \n\n"
        " Find the tangential component of acceleration at time t. (aT)\n\n"
        " Find the normal     component of acceleration at time t. (aN)\n\n",
         feq, geq, heq,   t);
 stop();

 clrscrn();
 printf(" The tangential component of"
        " acceleration at time t is \n\n"
        "           aT =  r'.r'' / ||r'|| \n\n"
        " aT = %+.3f \n\n",aT_3d(f,g,h,t,H));
 stop();

 clrscrn();
 printf(" The normal component of acceleration at time t is \n\n"
        "           aN =  ||r' x r''|| / ||r'|| \n\n"
        " or\n\n"
        "           aN =  sqrt( ||a||^2 - aT ^2 ) \n\n"
        " aN = %+.3f \n\n" 
        " aN = %+.3f \n\n",
          aN_3d  (f,g,h,t,H),
          aN_3d_2(f,g,h,t,H));
 stop();

 return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */


Exemple de sortie écran :

 The position vector of a moving point at time t is  

 r(t) = f(t)i + g(t)j + h(t)k 

 With 

 f : t-> t  
 g : t-> t**2  
 h : t-> t**3

 t = +4.00 

 Find the tangential component of acceleration at time t. (aT)

 Find the normal     component of acceleration at time t. (aN)

 Press return to continue.


Exemple de sortie écran :

 The tangential component of acceleration at time t is 

           aT =  r'.r'' / ||r'|| 

 aT = +23.997 

 Press return to continue.


Exemple de sortie écran :

 The normal component of acceleration at time t is 

           aN =  ||r' x r''|| / ||r'|| 

 or

           aN =  sqrt( ||a||^2 - aT ^2 ) 

 aN = +2.033 

 aN = +2.033 

 Press return to continue.