Mathc initiation/Fichiers c : c76cq
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c01q.c |
---|
/* --------------------------------- */
/* save as c1q.c */
/* --------------------------------- */
#include "x_hfile.h"
#include "fq.h"
/* --------------------------------- */
int main(void)
{
double c = 0.5;
clrscrn();
printf(" f : x-> %s\n\n"
" Df : x-> %s\n\n\n", feq, Dfeq);
printf(" Compute the derivative of f when x = %0.3f\n\n", c);
printf(" with Df(%0.3f) = %0.8f \n",c, Df(c));
printf(" with fx_x(%0.3f) = %0.8f\n\n\n",c, fx_x(f,c,H));
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
Calculons la dérivé de la fonction f :
Exemple de sortie écran :
f : x-> atanh(x)
Df : x-> 1/(1-x**2)
Compute the derivative of f when x = 0.500
with Df(0.500) = 1.33333333
with fx_x(0.500) = 1.33333335
Press return to continue.
Calculons la dérivé :
y = atanh(x) (*)
tanh(y) = tanh(atanh(x))
tanh(y) = x (**)
(tanh(y))' = (x)'
sech**2(y) dy/dx = 1
dy/dx = 1/sech**2(y) sech**2(x) + tanh**2(x) = 1
sech**2(x) = 1 - tanh**2(x)
dy/dx = 1/(1 - tanh**2(y))
tanh(y) = x (**)
dy/dx = 1/(1 - x**2)
y = atanh(x) (*)
d(atanh(x))/dx = 1/(1 - x**2)
(atanh(x))' = 1/(1 - x**2)