Aller au contenu

Mathc complexes/a175

Un livre de Wikilivres.

Application

Installer et compiler ce fichier dans votre répertoire de travail.

c00a.c
/* ------------------------------------ */
/*  Save as :  c00a.c                   */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define  TAB  C2 
#define  RCA  R3 
/* ------------------------------------ */
void fun(void)
{
double **A[TAB];
double **InvA[TAB];

double **P    =   r_mZ(  i_mZ(RCA,RCA),99); 
double **InvP = inv_mZ(P,i_mZ(RCA,RCA)   );

double **T =       i_mZ(RCA,RCA);
double **P_1_InvA0_P = i_mZ(RCA,RCA);
int c;

  for(c=C0; c<TAB; c++)
     {   
         A[c]  = i_mZ(RCA,RCA); 
       InvA[c] = i_mZ(RCA,RCA);   
	   }
	    
  r_mZ(A[C0],99);	    
	     
  mul_mZ(InvP,A[C0],T); 
  mul_mZ(T,P,A[C0+C1]);

  clrscrn();
  printf(" The two similar matrices :\n\n"
         " A[%d] = P**(-1) A[%d] P   \n\n",C1,C0);
  for(c=C0; c<TAB; c++)
     {
	  printf(" A[%d] : ",c);      
      p_mZ(A[c],S12,P4,S12,P4,C6); 
     }   
  stop();    

  clrscrn();     
  printf(" The inverse of the two similar matrices : \n\n");    
    for(c=C0; c<TAB; c++)
     {
	  printf(" InvA[%d] : ",c
	  );      
      pE_mZ(inv_mZ(A[c],InvA[c]),S12,P4,S11,P4,C6); 
     } 
  stop();    

  clrscrn();     
  mul_mZ(InvP,InvA[C0],T); 
  mul_mZ(T,P,P_1_InvA0_P);
     
  printf(" InvA[%d] = P**(-1) InvA[%d] P \n\n",C1,C0); 
  printf(" InvA[%d] : ",C1);      
  pE_mZ(InvA[1],S12,P4,S11,P4,C6); 
  printf(" P**(-1) InvA[%d] P : ",C0);      
  pE_mZ(P_1_InvA0_P,S12,P4,S11,P4,C6); 



  for(c=C0; c<TAB; c++)
     { 
	   f_mZ(A[c]);
	   f_mZ(InvA[c]);
	   }
	   
  f_mZ(P);		 
  f_mZ(InvP); 	   
  f_mZ(T); 
  f_mZ(P_1_InvA0_P);       
}
/* ------------------------------------ */
int main(void)
{
time_t t;

  srand(time(&t));
  
  do{
        fun();
        
  }while(stop_w());

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Je crée une suite de deux Matrices semblables.


Exemple de sortie écran :

 -------------------------------------------
 The two similar matrices :

 A[1] = P**(-1) A[0] P   

 A[0] : 
    -73.0000    +63.0000i     -96.0000    -36.0000i     -34.0000     -2.0000i 
    -47.0000    -25.0000i      -5.0000    -95.0000i     +68.0000     +5.0000i 
    +30.0000    +67.0000i     +88.0000     -2.0000i     +22.0000    -79.0000i 

 A[1] : 
   -236.7995   -143.2208i    +106.5832    +85.3502i    +152.3677    +45.5125i 
   -177.2947   +284.2601i     +16.9742    -96.5831i     -76.4140   -147.0676i 
    -62.2371   -333.4057i     +41.4827   +165.0499i    +163.8253   +128.8039i 

 Press return to continue. 


 -------------------------------------------
 The inverse of the two similar matrices : 

 InvA[0] : 
 -5.5808e-03-7.2638e-03i  +4.1355e-03-2.3909e-03i  -1.6687e-04-5.8825e-03i 
 +1.5389e-03+2.9228e-03i  -2.3637e-03+6.5115e-03i  +4.6434e-03+1.7419e-03i 
 -5.4735e-03-4.3051e-03i  +8.9070e-03-3.6105e-03i  +1.3745e-04+2.4779e-03i 

 InvA[1] : 
 -5.1659e-03-2.9926e-04i  -3.3495e-03-3.8725e-03i  +2.5946e-03-5.1396e-03i 
 +5.1730e-03+1.5121e-02i  -1.2297e-02-1.2227e-02i  -1.2805e-02-2.2176e-02i 
 -1.7872e-03-1.8262e-02i  +1.8925e-03+5.7091e-03i  +9.6557e-03+1.4252e-02i 

 Press return to continue. 


 -------------------------------------------
 InvA[1] = P**(-1) InvA[0] P 

 InvA[1] : 
 -5.1659e-03-2.9926e-04i  -3.3495e-03-3.8725e-03i  +2.5946e-03-5.1396e-03i 
 +5.1730e-03+1.5121e-02i  -1.2297e-02-1.2227e-02i  -1.2805e-02-2.2176e-02i 
 -1.7872e-03-1.8262e-02i  +1.8925e-03+5.7091e-03i  +9.6557e-03+1.4252e-02i 

 P**(-1) InvA[0] P : 
 -5.1659e-03-2.9926e-04i  -3.3495e-03-3.8725e-03i  +2.5946e-03-5.1396e-03i 
 +5.1730e-03+1.5121e-02i  -1.2297e-02-1.2227e-02i  -1.2805e-02-2.2176e-02i 
 -1.7872e-03-1.8262e-02i  +1.8925e-03+5.7091e-03i  +9.6557e-03+1.4252e-02i 


 Press   return to continue
 Press X return to stop