Le noyau atomique/Pénétration des rayonnements radioactifs dans la matière
Les rayonnements radioactifs peuvent pénétrer dans la matière sur quelques centimètres avant d'être stoppés. Mais tous n'ont pas la même facilité à pénétrer la matière : certains sont arrêtés par une simple feuille de papier, alors que d'autres traversent du métal, voire du béton. Le rayonnement alpha est notamment arrêté par une simple feuille de papier, signe que celui-ci est une particule massive qui interagit fortement avec la matière. Le rayonnement bêta est arrêté par une feuille d'aluminium. Quant au rayonnement gamma, il demande plusieurs centimètres de plomb pour être stoppé. Le rayonnement neutronique est arrêté par la matière assez difficilement : il faut le ralentir avec une grosse épaisseur de matière (plusieurs centimètres d'eau ou des murs de béton renforcés avec du bore).
L'interaction matière-rayons alpha/bêta/neutriniques
[modifier | modifier le wikicode]Ces différences proviennent des charges et de la masse des rayonnements : les rayonnements lourds sont arrêtés plus rapidement que les légers, de même que les rayonnements chargés. La raison à cela est que les rayons qui traversent la matière sont soumis à des interactions électromagnétiques entre matière et atomes. Elles sont de plusieurs types, mais on peut les classer en deux grands types :
- Les collisions. Les rayonnements vont entrer en collision avec les atomes présents dans le matériau. Les atomes du matériau sont considérés comme immobiles, alors que le rayon ne l'est pas. Le résultat est que l'impacteur va transférer une partie de sa quantité de mouvement à l'atome, ce qui le ralentit. Le rayonnement ralentit à chaque collision, ce qui le freine plus ou moins rapidement. Au bout d'un certain nombre de collisions, le rayonnement est ralenti. Plus la probabilité de collision est forte, plus le rayonnement ralenti. Précisément, tout dépend de la distance moyenne entre deux collisions (la longueur de libre parcours moyen). Plus les atomes sont proches, plus ce libre parcours moyen sera court et plus les collisions sont fréquentes. Cela fait que les matériaux denses sont de très bons ralentisseurs de rayons radioactifs.
- La répulsion électrostatique. D'autres processus sont liés à la répulsion électrostatique et agissent uniquement sur les particules chargées. Les rayonnements interagissent avec le champ électrique présent naturellement dans le matériau traversé, ce qui les ralentit. Par exemple, une particule bêta- (un électron) va être repoussé par les électrons présents dans le matériau, ce qui le freine rapidement. Même chose pour une particule alpha, qui sera repoussée par les noyaux atomiques du matériau. Par contre, un neutron ne sera pas freiné par ce mécanisme, vu qu'il n'est pas chargé. Ce processus est prédominant pour les particules chargées, la probabilité d'une collision étant assez "rare" (rappelons que la matière est composée à plus de 99% de vide).
La formule de Bethe
[modifier | modifier le wikicode]De manière générale, la distance de pénétration dépend des différences d'énergie cinétique entre rayonnements : plus un rayonnement est énergétique, plus il pénètre loin dans la matière. Le résultat est que les particules alpha sont celles qui pénètrent le moins dans la matière : non seulement elles sont massives, mais elles sont en plus bien chargées électriquement. Les particules bêta sont elles aussi arrêtées rapidement, surtout à cause de leur charge électrique (leur masse étant plus légère que celle d'une particule alpha). Les neutrons sont freinés essentiellement par les collisions, de même que les rayons gamma. La masse nulle et la forte énergie de ces derniers les rend plus difficiles à freiner que les neutrons, d'où leur fort pouvoir de pénétration.
Il existe une formule qui résume l'influence de ces éléments sur la profondeur de pénétration d'un rayonnement : la formule de Bethe. Celle-ci dit combien d'énergie cinétique une particule perd en parcourant une distance x dans le matériau freinant.
, avec c la vitesse de la lumière, 0 la permittivité électrique du vide, e et me la charge et la masse de l’électron, I une constante qui dépend du matériau et n la densité électronique du matériau freinant.
Il existe aussi une version relativiste de cette formule, que voici :
Les chambres à brouillard
[modifier | modifier le wikicode]Les collisions d'un rayon radioactifs sur un atome peuvent l'ioniser, s'ils sont assez énergétiques. Dans les faits, tous les rayonnements radioactifs sont des rayonnements ionisants (qui ionisent les atomes). Cette ionisation est à l'origine des dégâts de la radioactivité sur les tissus biologiques, comme nous le verrons plus tard. Mais c'est aussi grâce à ce phénomène que l'on peut détecter les rayons radioactifs. Pour cela, on utilise une chambre froide hermétique emplie de vapeur d'eau ou d'alcool diluée. La chambre est refroidie à une faible température, inférieure à 0 degré, histoire que la vapeur d'eau/alcool puisse se condenser en brouillard. Mais les conditions physiques dans la chambre sont telles que la vapeur ne peut se condenser spontanément. Il faut pour cela que la vapeur d'eau s’agglomère autour d'impuretés, qui font office de noyaux de condensation. L'ionisation induite permet justement de créer de telles impuretés. Lorsqu'un rayon radioactif cogne une molécule d'eau/d'alcool, elle peut l'ioniser. L'ion ainsi formé sert de noyau de condensation et donne naissance à une petite gouttelette d'eau/alcool. Le rayon radioactif donne naissance à plusieurs gouttelettes sur son trajet, ce qui donne une petite traînée de brouillard sur sa trajectoire. C'est ainsi que l'on peut détecter des rayonnements radioactifs.
L'interaction matière-rayons gamma
[modifier | modifier le wikicode]Le cas des rayons gamma est un petit peu à part. Vu qu'il s'agit de lumière, ils sont absorbés lorsqu'ils traversent la matière. Quand on éclaire une surface, celle-ci absorbe une partie de la lumière qu'elle reçoit et les rayons gamma ne font pas exception. L'intensité de l'absorption dépend de plusieurs paramètres, dont les plus importants sont les suivants :
- L'épaisseur du matériau. L'absorption se fait progressivement sur le trajet de la lumière, une faible portion étant absorbée à chaque centimètre traversé. Plus le matériau est épais, plus le rayon gamma doit parcourir une grande distance avant de sortir du matériau et plus les opportunités d'absorptions sont grandes.
- Le nombre atomique, la taille des atomes. Intuitivement, plus les atomes du matériau sont gros, plus les rayons gamma ont de chance d'entrer en collision avec eux. Il se trouve que les atomes les plus gros sont ceux qui ont beaucoup d'électrons, et donc ceux qui ont un nombre atomique élevé.
- La densité du matériau. Plus un matériau est dense, plus ses atomes seront nombreux par unité de volume et plus les rayons ont de chance de les cogner sur leur trajet.
La loi de Beer-Lambert
[modifier | modifier le wikicode]Si on prend un bloc de matériau d'épaisseur , l'intensité en entrée et en sortie seront différentes. L'expérience montre que le rayonnement perd un pourcentage de son intensité, que nous noterons .
Il est raisonnable de supposer que l'absorption est constante pour une distance identique. Ce qui fait que l'on a, pour une distance infinitésimalement petite :
- , avec un coefficient appelé l'absorbance.
En intégrant pour une profondeur allant de 0 à x, on a :
La primitive du premier terme se calcule avec la formule suivante :
On utilise la formule :
En prenant l'exponentielle, on trouve l'absorption en fonction de la distance de pénétration. L'équation obtenue dit que l'absorption des rayons gamma est exponentielle avec la distance.
- , avec l'intensité à la surface du matériau.
On peut réécrire cette équation en utilisant le paramètre , qui peut s'interpréter comme la distance pour que l'intensité soit divisée par .
Cette équation de l'optique s'appelle la Loi de Beer-Lambert.
En utilisant cette équation, on peut démontrer que 95% de la lumière est absorbée à une distance de . On peut donc raisonnablement dire, en approximation, que la lumière ne pénètre que sur une distance bien précise, proche de . Cette distance n'est pas très grande pour les matériaux opaques, mais devient sensible pour les matériaux transparents. Pour les rayons gamma, beaucoup de matériaux sont transparents, ou presque transparents. Cela traduit que l'absorbance des matériaux est très faible pour les rayons gamma (mais pas forcément pour les autres formes de lumière).
Les mécanismes d'interaction rayons gamma-matière
[modifier | modifier le wikicode]L'absorption des rayons gamma est liée à divers mécanismes similaires à ceux mentionnés pour la matière. Vu que les rayons gamma ne sont pas chargés, seules les collisions avec les atomes peuvent les ralentir. On pourrait croire que leur nature lumineuse les empêche d'entrer en collision avec la matière, mais ce n'est pas le cas. Quand un rayon gamma cogne un atome, plusieurs phénomènes peuvent se produire : soit le photon rebondit sur l'atome, soit il l'ionise, soit un crée une paire électron-positron. Ces phénomènes s'appellent respectivement l'effet Compton, l'effet photoélectrique et l'effet de création de paires.
- L'effet Compton se manifeste quand la lumière rebondit sur l'atome impacté et lui transfère une partie de son énergie : le rayon gamma perd de l'énergie.
- L'effet photoélectrique se manifeste quand le photon gamma cogne un électron et lui transmet son énergie. L'électron acquiert assez d’énergie pour quitter l'atome, ce qui l'ionise.
- L'effet de création de paire fait que le photon se désintègre en une paire électron/positron. Cela peut arriver spontanément dans le champ électrique du solide traversé, ou alors suite à une collision avec un noyau atomique.
Le mécanisme dominant dépend fortement de l'énergie du photon gamma incident. Ci-dessous est illustré le mécanisme dominant en fonction de l'énergie du photon gamma.