Le noyau atomique/Les rayonnements radioactifs
En 1896, le savant Becquerel remarqua que l'Uranium émet de la lumière fortement énergétique, y compris quand il est plongé dans le noir. La rumeur veut qu'il ait découvert cela par pure sérendipité, en laissant traîner un échantillon d'Uranium sur une plaque photographique emballée dans du papier. Il remarqua que l'Uranium avait impressionné la plaque alors que celle-ci n'avait pas été exposée à la lumière. Il en déduisit que l'Uranium avait impressionné la plaque avec un rayonnement électromagnétique invisible. Après avoir d'abord pensé à un phénomène dit de phosphorescence, il remarqua rapidement que l'Uranium émettait des rayonnements sans pour autant avoir absorbé de la lumière auparavant. Il ne fut cependant pas capable d'expliquer plus ce comportement et ne pût expliquer l'origine du rayonnement et sa nature. Il ne le savait pas encore, mais il avait été le premier à observer l'effet des rayonnements radioactifs dans son laboratoire...
Quelques années plus tard, les époux Pierre et Marie Curie étudièrent les rayonnements découverts par Becquerel. Ils utilisèrent des échantillons de Pechblende (un minerai d'Uranium), dont une analyse minutieuse permis d'en extraire deux composés radioactifs : un très actif qu'ils appelèrent Polonium (en référence à la Pologne, pays natal de Marie Curie) et un autre moins actifs connu aujourd'hui sous le nom de Radium. Ils remarquèrent que d'autres substances émettaient elles aussi des rayonnements : le thorium, l'actinium, etc. Vu que ces composés restaient radioactifs malgré les nombreux traitements chimiques subits, il leur était évident que la radioactivité est un phénomène non-influencé par les réactions chimiques.
Quelques années plus tard, Rutherford découvrit que tous les rayons émis par les substances radioactives ne sont pas uniques. Il en existe plusieurs types et il identifia les rayons alpha des rayons bêta. Des recherches ultérieures, menées avec le physicien Frederic Soddy, montrèrent de plus que ces rayons sont en réalité des particules. Il montra aussi que les particules alpha sont similaires aux atomes d'Hélium. Il montra que leur spectre est identique à celui des atomes d'Hélium et qu'elles ont la même masse que ce dernier. En 1900, le physicien Paul Villard découvrit les rayons dits gamma et montra qu'ils sont similaires aux rayons X, à l’exception de leur énergie, bien plus importante.
Rapidement, les physiciens supposèrent que les rayonnements radioactifs sont émis par le noyau et sont donc des phénomènes nucléaires. La radioactivité est tout simplement l'émission de rayonnement ou des particules. L'émission de ces rayonnements radioactifs a lieu après une désintégration radioactive, c'est à dire quand un noyau se transforme en un autre noyau, un autre nucléide. Tous les noyaux ne sont pas radioactifs : les désintégrations concernent seulement les noyaux atomiques dit instables, qui peuvent se désintégrer. Les noyaux stables ne se désintégrant pas (ou très in-fréquemment) et restent les mêmes.
Les types de rayonnements
[modifier | modifier le wikicode]Les scientifiques ont identifié plusieurs rayonnements radioactifs, qu'ils ont nommés avec l'alphabet grec : rayonnements alpha, bêta, gamma. Lors de l'étude des rayonnements radioactifs, les scientifiques ont cherché à savoir s'ils étaient chargés électriquement. Pour cela, ils les ont fait passer dans un champ magnétique, pour vérifier s'ils étaient déviés. Il se trouve que certains d'entre eux le sont, ce qui signifie qu'ils ont une charge électrique, alors que d'autres ne le sont pas. Pour ceux qui sont déviés, l'angle de déviation varie suivant ce qui est émis par l'atome, signe que les rayonnements n'ont pas tous la même masse. Les scientifiques ont alors identifié plusieurs rayonnements :
- le rayonnement alpha, chargé positivement, avec une masse importante ;
- le rayonnement bêta, chargé positivement ou négativement, avec une masse plus faible ;
- le rayonnement gamma, sans charge et sans masse, identique à de la lumière ;
- le rayonnement neutronique, non-chargé, avec la même masse que le neutron ;
- le rayonnement protonique, chargé positivement, avec la même masse que le proton.
Suite à d'autres observations, les scientifiques purent déterminer quelle était la nature de ces rayonnements. Pour résumer, le rayonnement alpha est un noyau d'hélium, que le rayonnement bêta est un électron (ou un anti-électron) et que les rayons gamma sont de la lumière fortement énergétique.
Type de rayonnement | Charge électrique | Particule/nature |
---|---|---|
Alpha | Noyau d'Hélium-4 | |
Bêta- | Électron | |
Bêta+ | Positron (anti-électron) | |
Neutronique | Neutron | |
Protonique | Proton | |
Gamma | Lumière/Photon |
Les rayons gamma : des photons très énergétiques
[modifier | modifier le wikicode]Les rayonnements gamma sont de la lumière très énergétique, de quelques keV à plusieurs centaines de GeV, bien plus énergétique que les rayons X. Leur longueur d'onde est inférieure à mètres (un picomètre), ce qui donne une fréquence supérieure à Hertz (des exahertz).
Chaque élément chimique/nucléide émet un rayonnement gamma assez particulier. Les rayons gamma émis ont une énergie qui est répartie sur un intervalle de fréquence assez large, appelé le spectre gamma. Mais cela ne signifie pas que toutes les valeurs dans cet intervalle sont équiprobables. On observe généralement un excès de photons émis, pour certaines valeurs de l'énergie et un déficit pour d'autres. Si on compte le nombre de rayons gamma émis par un nucléide et qu'on les classe selon leur énergie E, on obtient un graphique appelé le spectre d'émission gamma. Celui-ci varie pour chaque élément chimique/nucléide : deux nucléides différents ont des spectres gamma différents. Ci-dessous sont illustrés les spectres du Cobalt-60 et du Césium-137 : on voit qu'ils ne sont pas identiques.
Les rayons alpha : des noyaux d'Hélium-4
[modifier | modifier le wikicode]Les expériences de déviation magnétique ont montré que les rayonnements alpha sont déviés dans le même sens qu'un courant qui irait dans le même sens. Cela prouve qu'ils sont chargés électriquement et que cette charge est positive, égale à (deux fois la charge du proton). Ils ont une masse assez élevée, égale à celle de quatre nucléons. En conséquence, on peut supposer qu'il s'agit d'un fragment de noyau qui a quitté son noyau d'origine, quelle qu’en soit la raison. Ce morceau doit contenir, d'après sa masse, quatre nucléons, dont seulement deux sont chargés. On en déduit qu'il s'agit de noyaux d'Hélium-4, composés de deux protons et de deux neutrons.
Comme pour les rayons gamma, on peut établir un spectre d'émission alpha, en comptant le nombre de particules alpha émises avec une énergie E. La différence avec le spectre gamma est qu'il est plus petit, compressé dans un intervalle bien plus restreint. Chaque nucléide émet des particules alpha dans un intervalle très précis, qui lui est propre. Sur le spectre alpha, chaque nucléide forme un pic assez abrupt, dont la position est spécifique au nucléide. Le pic est centré autour d'une valeur d'énergie E et est de plus symétrique (ce qui veut dire qu'il y a autant de particules alpha émises avec une énergie < à E que de particules émises avec une énergie supérieure)
Les rayons bêta : électrons et positrons
[modifier | modifier le wikicode]Les expériences de déviation ont prouvé que les rayons bêta sont des particules chargées, qui possèdent une masse. Les premières expériences semblaient montrer que les rayons bêta sont chargées négativement, avec une masse identique à celle de l’électron. Il était naturel de croire que toutes les particules bêta sont des électrons. Mais des expériences ultérieures ont montré que certaines désintégrations bêta produisaient des particules bêta toutes autres. Celles-ci ont la même masse que l’électron, mais sont chargées positivement. Il s'agit en fait d'anti-électrons (l’anti-particule de l’électron), auxquelles on a donné le nom de positrons. Pour résumer les particules bêta sont soit des électrons, soit des positrons. On leur donne parfois le nom de particules bêta+ (positron) et bêta- (électron), pour indiquer leur charge électrique.
Les particules bêta ont une énergie cinétique variable, comprise entre zéro et une valeur maximale. Par exemple, la désintégration bêta du Bismuth 210 crée des électrons dont l'énergie est comprise entre 0 et 1,15 électron-volts, avec une moyenne à 0,4 électron-volts. Encore une fois, on peut établir un spectre bêta en faisant le compte pour un grand nombre de désintégrations bêta.