Aller au contenu

Mathc matrices/c29a1

Un livre de Wikilivres.


La décomposition spectral


Installer et compiler ces fichiers dans votre répertoire de travail.


c01.c
/* ------------------------------------ */
/*  Save as :  c01.c                    */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
void fun(int r)
{
double **A         = rsymmetric_mR(i_mR(r,r),999.);
double **EigsVector=               i_mR(r,r);
double **EigsVector_T=             i_mR(r,r);

double **b1=                       i_mR(r,C1);
double **b2=                       i_mR(r,C1);
double **b3=                       i_mR(r,C1);

double **r1=                       i_mR(R1,r);
double **r2=                       i_mR(R1,r);
double **r3=                       i_mR(R1,r);

double **b1r1=                     i_mR(r,r);
double **b2r2=                     i_mR(r,r);
double **b3r3=                     i_mR(r,r);

double **T  =                      i_mR(r,r);
double **Ide=                      i_mR(r,r);

  clrscrn();
  printf(" A:");
  p_mR(A, S5, P0, C6);

  eigs_V_mR(A, EigsVector); 
  printf(" EigsVector:");
  p_mR(EigsVector, S5, P6, C6);

  transpose_mR(EigsVector,EigsVector_T);
  printf(" Inverse of EigsVector = EigsVector_T");
  pE_mR(EigsVector_T, S12, P4, C6);

  c_c_mR(EigsVector, C1, b1, C1 );
  c_c_mR(EigsVector, C2, b2, C1 );
  c_c_mR(EigsVector, C3, b3, C1 );
  
  c_r_mR(EigsVector_T, R1, r1, C1 );
  c_r_mR(EigsVector_T, R2, r2, C1 );  
  c_r_mR(EigsVector_T, R3, r3, C1 );
   stop(); 
  
  clrscrn();
  printf(" b1             \t\t\t\t 3*Rx1*C");
  p_mR(b1, S12, P3, C6); 
  printf(" b2 ");
  p_mR(b2, S12, P3, C6);
  printf(" b3 ");
  p_mR(b3, S12, P3, C6);   
  stop();

  clrscrn();
  printf(" r1             \t\t\t\t 1*Rx3*C");
  p_mR(r1, S12, P3, C6); 
  printf(" r2 ");
  p_mR(r2, S12, P3, C6);
  printf(" r3 ");
  p_mR(r3, S12, P3, C6);   
  stop();
      
  clrscrn();
   mul_mR(b1, r1, b1r1);
  mul_mR(b2, r2, b2r2);
  mul_mR(b3, r3, b3r3);
  
  printf(" b1r1           \t\t\t\t 3*Rx1*C  1*Rx3*C = 3*Rx3*C");
  p_mR(b1r1, S12, P3, C6); 
  printf(" b2r2 ");
  p_mR(b2r2, S12, P3, C6);
  printf(" b3r3 ");
  p_mR(b3r3, S12, P3, C6);   
  stop();
  
  clrscrn();
  add_mR(b1r1, b2r2, T); 
  add_mR(   T, b3r3, Ide);  
  printf(" b1r1 + b2r2 + b3r3 = Ide");
  p_mR(Ide, S12, P3, C6);
   
   
  f_mR(A);
  f_mR(EigsVector);
  f_mR(EigsVector_T);
    
  f_mR(b1);
  f_mR(b2);
  f_mR(b3);

  f_mR(r1);
  f_mR(r2);
  f_mR(r3);  
 
  f_mR(b1r1);
  f_mR(b2r2);
  f_mR(b3r3);

  f_mR(T);
  f_mR(Ide);
}
/* ------------------------------------ */
int main(void)
{

do
{
 fun(R3);

} while(stop_w());

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Nous voyons une des propriètés de la décomposition spectral:


 b1r1 + b2r2 + b3r3 = Ide
 
 
b1r1 est obtenue en multipliant la première colonne de la matrice des vecteurs propres par la première ligne de la matrice inverse des vecteurs propres.

 
       Vp      invVp
 
                r1
    b1 b2 b3    r2        ->       b1*r1;  b2*r2;  b3*r3;  Cela nous donne trois matrices [3x3]
                r3


Exemple de sortie écran :
 A:
 +479  +992  -843 
 +992  -763  +708 
 -843  +708   +88 

 EigsVector:
-0.481846 +0.848246 +0.219777 
+0.736726 +0.256380 +0.625703 
-0.474404 -0.463408 +0.748461 

 Inverse of EigsVector = EigsVector_T
 -4.8185e-01  +7.3673e-01  -4.7440e-01 
 +8.4825e-01  +2.5638e-01  -4.6341e-01 
 +2.1978e-01  +6.2570e-01  +7.4846e-01 

 Press return to continue. 


 b1             				               3*Rx1*C
      -0.482 
      +0.737 
      -0.474 

 b2 
      +0.848 
      +0.256 
      -0.463 

 b3 
      +0.220 
      +0.626 
      +0.748 

 Press return to continue. 


 r1             				              1*Rx3*C
      -0.482       +0.737       -0.474 

 r2 
      +0.848       +0.256       -0.463 

 r3 
      +0.220       +0.626       +0.748 

 Press return to continue. 


 b1r1           				              3*Rx1*C  1*Rx3*C = 3*Rx3*C
      +0.232       -0.355       +0.229 
      -0.355       +0.543       -0.350 
      +0.229       -0.350       +0.225 

 b2r2 
      +0.720       +0.217       -0.393 
      +0.217       +0.066       -0.119 
      -0.393       -0.119       +0.215 

 b3r3 
      +0.048       +0.138       +0.164 
      +0.138       +0.392       +0.468 
      +0.164       +0.468       +0.560 

 Press return to continue. 


 b1r1 + b2r2 + b3r3 = Ide
      +1.000       +0.000       +0.000 
      +0.000       +1.000       +0.000 
      +0.000       +0.000       +1.000 


 Press   return to continue
 Press X return to stop