Mathc matrices/c24d
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c05c.c |
---|
/* ------------------------------------ */
/* Save as : c05c.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RAT R2
#define CAT C5
#define Cb C1
/* ------------------------------------ */
#define CFREE Cb+C3
/* ------------------------------------ */
int main(void)
{
double a_Tb[RAT*(CAT+Cb)]={
2,0,0,4,1,0,
0,3,0,5,0,0
};
double **ATb = ca_A_mR(a_Tb, i_Abr_Ac_bc_mR(RAT,CAT,Cb));
double **AT = c_Ab_A_mR(ATb, i_mR(RAT,CAT));
double **b = c_Ab_b_mR(ATb, i_mR(RAT,Cb));
double **ATb_free = i_Abr_Ac_bc_mR(CAT,CAT,CFREE);
double **B = i_mR(CAT,CFREE);
double **ATB = i_mR(RAT,CFREE);
int r;
clrscrn();
printf("Find a basis for the orthogonal complement of AT :\n\n");
printf(" AT :");
p_mR(AT,S6,P1,C10);
printf(" b :");
p_mR(b,S6,P1,C10);
printf(" ATb :");
p_mR(ATb,S6,P1,C10);
stop();
clrscrn();
printf(" ATb : gj_PP_mR(ATb,NO) :");
gj_PP_mR(ATb,NO);
p_mR(ATb,S7,P3,C10);
put_zeroR_mR(ATb,ATb_free);
put_freeV_mR(ATb_free);
r = rsize_R(ATb_free);
while(r>R1)
zero_below_pivot_gj1Ab_mR(ATb_free,r--);
printf(" ATb_free :");
p_mR(ATb_free,S7,P3,C10);
printf(" B is a basis for the orthogonal complement of AT :");
P_mR(c_Ab_b_mR(ATb_free,B),S10,P12,C7);
stop();
clrscrn();
printf(" AT :");
p_mR(AT, S7,P3,C10);
printf(" B :");
p_mR(B, S7,P3,C10);
printf(" AT * B :");
p_mR(mul_mR(AT,B,ATB), S7,P6,C10);
stop();
f_mR(ATb);
f_mR(AT);
f_mR(b);
f_mR(ATb_free);
f_mR(B);
f_mR(ATB);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Trouver une projection sur un sous-espace vectoriel par une application linéaire :
- B est une base pour le complément orthogonal de AT. Trouver une matrice V qui projette un vecteur x sur R5.
Proj(x) = V * x V = Id - (B * inv(BT*B) * BT) .
- Dans cet exemple nous calculons B. Nous l'utiliserons dans le prochain exemple.
Exemple de sortie écran :
Find a basis for the orthogonal complement of AT :
AT :
+2.0 +0.0 +0.0 +4.0 +1.0
+0.0 +3.0 +0.0 +5.0 +0.0
b :
+0.0
+0.0
ATb :
+2.0 +0.0 +0.0 +4.0 +1.0 +0.0
+0.0 +3.0 +0.0 +5.0 +0.0 +0.0
Press return to continue.
ATb : gj_PP_mR(ATb,NO) :
+1.000 +0.000 +0.000 +2.000 +0.500 +0.000
+0.000 +1.000 +0.000 +1.667 +0.000 +0.000
ATb_free :
+1.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 -2.000 -0.500
+0.000 +1.000 +0.000 +0.000 +0.000 +0.000 +0.000 -1.667 +0.000
+0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000
+0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +1.000 +0.000
+0.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +1.000
B is a basis for the orthogonal complement of AT :
+0.000000000000, +0.000000000000, -2.000000000000, -0.500000000000,
+0.000000000000, +0.000000000000, -1.666666666667, +0.000000000000,
+0.000000000000, +1.000000000000, +0.000000000000, +0.000000000000,
+0.000000000000, +0.000000000000, +1.000000000000, +0.000000000000,
+0.000000000000, +0.000000000000, +0.000000000000, +1.000000000000
Press return to continue.
AT :
+2.000 +0.000 +0.000 +4.000 +1.000
+0.000 +3.000 +0.000 +5.000 +0.000
B :
+0.000 +0.000 -2.000 -0.500
+0.000 +0.000 -1.667 +0.000
+0.000 +1.000 +0.000 +0.000
+0.000 +0.000 +1.000 +0.000
+0.000 +0.000 +0.000 +1.000
AT * B :
+0.000000 +0.000000 +0.000000 +0.000000
+0.000000 +0.000000 +0.000000 +0.000000
Press return to continue.