Aller au contenu

Mathc matrices/c22i

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00a.c
/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define  RA  R4
#define  CA  C6
#define  Cb  C1
#define  RB  R3                /* B : a basis for the rows space of A */
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
  +2,   -6,   +8,   -4,  +10,   +8,  0,
 +10,  -30,  +45,   -5,  +40,  +10,  0, 
 +14,  -42,  +63,   -7,  +63,  +49,  0, 
  -3,   +9,  -12,   +6,  -15,  -12,  0   
};

double **Ab =   ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,          i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,          i_mR(RA,Cb));

double **B  =                        i_mR(RB,CA);

  clrscrn();
  printf("Basis for a Row Space by Row Reduction :\n\n");
  printf(" A :");
  p_mR(A,S6,P1,C10);
  printf(" b :");
  p_mR(b,S6,P1,C10);
  printf(" Ab :");
  p_mR(Ab,S6,P1,C10);
  stop();

  clrscrn();
  
  printf(" The nonzero rows vectors  of Ab without b\n"
         " form a basis for the row space of  A \n\n"
         " Ab :");
  p_mR(Ab,S7,P3,C10);
  printf(" gj_PP_mR(Ab,NO) :");
  gj_PP_mR(Ab,NO);
  p_mR(Ab,S7,P3,C10);

  c_Ab_A_mR(Ab,A);
  
  c_r_mR(A,R1,B,R1);
  c_r_mR(A,R2,B,R2);
  c_r_mR(A,R3,B,R3);
  
  printf(" B :  Basis for a Row Space of A by Row Reduction");
  p_mR(B,S7,P3,C10); 
  stop();   
      
  f_mR(Ab);
  f_mR(b);
  f_mR(A);
  f_mR(B);  
  
  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.


Exemple de sortie écran :
Basis for a Row Space by Row Reduction :

 A :
  +2.0   -6.0   +8.0   -4.0  +10.0   +8.0 
 +10.0  -30.0  +45.0   -5.0  +40.0  +10.0 
 +14.0  -42.0  +63.0   -7.0  +63.0  +49.0 
  -3.0   +9.0  -12.0   +6.0  -15.0  -12.0 

 b :
  +0.0 
  +0.0 
  +0.0 
  +0.0 

 Ab :
  +2.0   -6.0   +8.0   -4.0  +10.0   +8.0   +0.0 
 +10.0  -30.0  +45.0   -5.0  +40.0  +10.0   +0.0 
 +14.0  -42.0  +63.0   -7.0  +63.0  +49.0   +0.0 
  -3.0   +9.0  -12.0   +6.0  -15.0  -12.0   +0.0 

 Press return to continue. 


 The nonzero rows vectors  of Ab without b
 form a basis for the row space of  A 

 Ab :
 +2.000  -6.000  +8.000  -4.000 +10.000  +8.000  +0.000 
+10.000 -30.000 +45.000  -5.000 +40.000 +10.000  +0.000 
+14.000 -42.000 +63.000  -7.000 +63.000 +49.000  +0.000 
 -3.000  +9.000 -12.000  +6.000 -15.000 -12.000  +0.000 

 gj_PP_mR(Ab,NO) :
 +1.000  -3.000  +4.500  -0.500  +4.500  +3.500  +0.000 
 +0.000  +0.000  +1.000  +3.000  -1.000  -1.000  +0.000 
 -0.000  -0.000  -0.000  -0.000  +1.000  +5.000  -0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 

 B :  Basis for a Row Space of A by Row Reduction
 +1.000  -3.000  +4.500  -0.500  +4.500  +3.500 
 +0.000  +0.000  +1.000  +3.000  -1.000  -1.000 
 -0.000  -0.000  -0.000  -0.000  +1.000  +5.000 

 Press return to continue.