Mathc matrices/c22i
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RA R4
#define CA C6
#define Cb C1
#define RB R3 /* B : a basis for the rows space of A */
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
+2, -6, +8, -4, +10, +8, 0,
+10, -30, +45, -5, +40, +10, 0,
+14, -42, +63, -7, +63, +49, 0,
-3, +9, -12, +6, -15, -12, 0
};
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab, i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab, i_mR(RA,Cb));
double **B = i_mR(RB,CA);
clrscrn();
printf("Basis for a Row Space by Row Reduction :\n\n");
printf(" A :");
p_mR(A,S6,P1,C10);
printf(" b :");
p_mR(b,S6,P1,C10);
printf(" Ab :");
p_mR(Ab,S6,P1,C10);
stop();
clrscrn();
printf(" The nonzero rows vectors of Ab without b\n"
" form a basis for the row space of A \n\n"
" Ab :");
p_mR(Ab,S7,P3,C10);
printf(" gj_PP_mR(Ab,NO) :");
gj_PP_mR(Ab,NO);
p_mR(Ab,S7,P3,C10);
c_Ab_A_mR(Ab,A);
c_r_mR(A,R1,B,R1);
c_r_mR(A,R2,B,R2);
c_r_mR(A,R3,B,R3);
printf(" B : Basis for a Row Space of A by Row Reduction");
p_mR(B,S7,P3,C10);
stop();
f_mR(Ab);
f_mR(b);
f_mR(A);
f_mR(B);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.
Exemple de sortie écran :
Basis for a Row Space by Row Reduction :
A :
+2.0 -6.0 +8.0 -4.0 +10.0 +8.0
+10.0 -30.0 +45.0 -5.0 +40.0 +10.0
+14.0 -42.0 +63.0 -7.0 +63.0 +49.0
-3.0 +9.0 -12.0 +6.0 -15.0 -12.0
b :
+0.0
+0.0
+0.0
+0.0
Ab :
+2.0 -6.0 +8.0 -4.0 +10.0 +8.0 +0.0
+10.0 -30.0 +45.0 -5.0 +40.0 +10.0 +0.0
+14.0 -42.0 +63.0 -7.0 +63.0 +49.0 +0.0
-3.0 +9.0 -12.0 +6.0 -15.0 -12.0 +0.0
Press return to continue.
The nonzero rows vectors of Ab without b
form a basis for the row space of A
Ab :
+2.000 -6.000 +8.000 -4.000 +10.000 +8.000 +0.000
+10.000 -30.000 +45.000 -5.000 +40.000 +10.000 +0.000
+14.000 -42.000 +63.000 -7.000 +63.000 +49.000 +0.000
-3.000 +9.000 -12.000 +6.000 -15.000 -12.000 +0.000
gj_PP_mR(Ab,NO) :
+1.000 -3.000 +4.500 -0.500 +4.500 +3.500 +0.000
+0.000 +0.000 +1.000 +3.000 -1.000 -1.000 +0.000
-0.000 -0.000 -0.000 -0.000 +1.000 +5.000 -0.000
+0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000
B : Basis for a Row Space of A by Row Reduction
+1.000 -3.000 +4.500 -0.500 +4.500 +3.500
+0.000 +0.000 +1.000 +3.000 -1.000 -1.000
-0.000 -0.000 -0.000 -0.000 +1.000 +5.000
Press return to continue.