Mathc matrices/c22g
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c00c.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RA R4
#define CA C6
#define Cb C1
#define RB R3 /* B : a basis for the rows space of A */
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
+13, -65, +39, -104, +26, +26, +0,
+30, -54, +36, -54, +36, +12, +0,
+35, -63, +42, -63, +42, +49, +0,
-11, +55, -33, +88, -22, -22, +0
};
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab, i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab, i_mR(RA,Cb));
double **B = i_mR(RB,CA);
clrscrn();
printf("Basis for a Row Space by Row Reduction :\n\n");
printf(" A :");
p_mR(A,S6,P1,C10);
printf(" b :");
p_mR(b,S6,P1,C10);
printf(" Ab :");
p_mR(Ab,S6,P1,C10);
stop();
clrscrn();
printf(" The nonzero rows vectors of Ab without b\n"
" form a basis for the row space of A \n\n"
" Ab :");
p_mR(Ab,S7,P3,C10);
printf(" gj_PP_mR(Ab,NO) :");
gj_PP_mR(Ab,NO);
p_mR(Ab,S7,P3,C10);
c_Ab_A_mR(Ab,A);
c_r_mR(A,R1,B,R1);
c_r_mR(A,R2,B,R2);
c_r_mR(A,R3,B,R3);
printf(" B : Basis for a Row Space of A by Row Reduction");
p_mR(B,S7,P3,C10);
stop();
f_mR(Ab);
f_mR(b);
f_mR(A);
f_mR(B);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.
Exemple de sortie écran :
Basis for a Row Space by Row Reduction :
A :
+13.0 -65.0 +39.0 -104.0 +26.0 +26.0
+30.0 -54.0 +36.0 -54.0 +36.0 +12.0
+35.0 -63.0 +42.0 -63.0 +42.0 +49.0
-11.0 +55.0 -33.0 +88.0 -22.0 -22.0
b :
+0.0
+0.0
+0.0
+0.0
Ab :
+13.0 -65.0 +39.0 -104.0 +26.0 +26.0 +0.0
+30.0 -54.0 +36.0 -54.0 +36.0 +12.0 +0.0
+35.0 -63.0 +42.0 -63.0 +42.0 +49.0 +0.0
-11.0 +55.0 -33.0 +88.0 -22.0 -22.0 +0.0
Press return to continue.
The nonzero rows vectors of Ab without b
form a basis for the row space of A
Ab :
+13.000 -65.000 +39.000 -104.000 +26.000 +26.000 +0.000
+30.000 -54.000 +36.000 -54.000 +36.000 +12.000 +0.000
+35.000 -63.000 +42.000 -63.000 +42.000 +49.000 +0.000
-11.000 +55.000 -33.000 +88.000 -22.000 -22.000 +0.000
gj_PP_mR(Ab,NO) :
+1.000 -1.800 +1.200 -1.800 +1.200 +1.400 +0.000
-0.000 +1.000 -0.563 +1.938 -0.250 -0.188 -0.000
-0.000 -0.000 -0.000 -0.000 -0.000 +1.000 -0.000
+0.000 +0.000 +0.000 -0.000 +0.000 +0.000 +0.000
B : Basis for a Row Space of A by Row Reduction
+1.000 -1.800 +1.200 -1.800 +1.200 +1.400
-0.000 +1.000 -0.563 +1.938 -0.250 -0.188
-0.000 -0.000 -0.000 -0.000 -0.000 +1.000
Press return to continue.