Aller au contenu

Mathc matrices/c22e

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00d.c
/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define  RA  R4
#define  CA  C6
#define  Cb  C1
#define  RB  R4                /* B : a basis for the rows space of A */
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
  +34,   -85,   +51,  -136,   +34,   +34,    +0, 
  +55,   -99,   +66,   -99,   +66,   +22,    +0, 
  +35,   -63,   +42,   -63,   +42,   +49,    +0, 
  -70,  +126,   -42,  +112,   -28,   -28,    +0    
};

double **Ab =   ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,          i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,          i_mR(RA,Cb));

double **B  =                        i_mR(RB,CA);

  clrscrn();
  printf("Basis for a Row Space by Row Reduction :\n\n");
  printf(" A :");
  p_mR(A,S6,P1,C10);
  printf(" b :");
  p_mR(b,S6,P1,C10);
  printf(" Ab :");
  p_mR(Ab,S6,P1,C10);
  stop();

  clrscrn();
  
  printf(" The nonzero rows vectors  of Ab without b\n"
         " form a basis for the row space of  A \n\n"
         " Ab :");
  p_mR(Ab,S7,P3,C10);
  printf(" gj_PP_mR(Ab,NO) :");
  gj_PP_mR(Ab,NO);
  p_mR(Ab,S7,P3,C10);

  c_Ab_A_mR(Ab,A);
  
  c_r_mR(A,R1,B,R1);
  c_r_mR(A,R2,B,R2);
  c_r_mR(A,R3,B,R3);
  c_r_mR(A,R4,B,R4);
    
  printf(" B :  Basis for a Row Space of A by Row Reduction");
  p_mR(B,S7,P3,C10); 
  stop();   
      
  f_mR(Ab);
  f_mR(b);
  f_mR(A);
  f_mR(B);  
  
  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.


Exemple de sortie écran :
Basis for a Row Space by Row Reduction :

 A :
 +34.0  -85.0  +51.0 -136.0  +34.0  +34.0 
 +55.0  -99.0  +66.0  -99.0  +66.0  +22.0 
 +35.0  -63.0  +42.0  -63.0  +42.0  +49.0 
 -70.0 +126.0  -42.0 +112.0  -28.0  -28.0 

 b :
  +0.0 
  +0.0 
  +0.0 
  +0.0 

 Ab :
 +34.0  -85.0  +51.0 -136.0  +34.0  +34.0   +0.0 
 +55.0  -99.0  +66.0  -99.0  +66.0  +22.0   +0.0 
 +35.0  -63.0  +42.0  -63.0  +42.0  +49.0   +0.0 
 -70.0 +126.0  -42.0 +112.0  -28.0  -28.0   +0.0 

 Press return to continue. 


 The nonzero rows vectors  of Ab without b
 form a basis for the row space of  A 

 Ab :
+34.000 -85.000 +51.000 -136.000 +34.000 +34.000  +0.000 
+55.000 -99.000 +66.000 -99.000 +66.000 +22.000  +0.000 
+35.000 -63.000 +42.000 -63.000 +42.000 +49.000  +0.000 
-70.000 +126.000 -42.000 +112.000 -28.000 -28.000  +0.000 

 gj_PP_mR(Ab,NO) :
 +1.000  -1.800  +0.600  -1.600  +0.400  +0.400  -0.000 
 -0.000  +1.000  -1.286  +3.429  -0.857  -0.857  -0.000 
 +0.000  +0.000  +1.000  -0.333  +1.333  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  -0.000  +1.000  +0.000 

 B :  Basis for a Row Space of A by Row Reduction
 +1.000  -1.800  +0.600  -1.600  +0.400  +0.400 
 -0.000  +1.000  -1.286  +3.429  -0.857  -0.857 
 +0.000  +0.000  +1.000  -0.333  +1.333  +0.000 
 +0.000  +0.000  +0.000  +0.000  -0.000  +1.000 

 Press return to continue.