Mathc matrices/c22e
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c00d.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RA R4
#define CA C6
#define Cb C1
#define RB R4 /* B : a basis for the rows space of A */
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
+34, -85, +51, -136, +34, +34, +0,
+55, -99, +66, -99, +66, +22, +0,
+35, -63, +42, -63, +42, +49, +0,
-70, +126, -42, +112, -28, -28, +0
};
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab, i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab, i_mR(RA,Cb));
double **B = i_mR(RB,CA);
clrscrn();
printf("Basis for a Row Space by Row Reduction :\n\n");
printf(" A :");
p_mR(A,S6,P1,C10);
printf(" b :");
p_mR(b,S6,P1,C10);
printf(" Ab :");
p_mR(Ab,S6,P1,C10);
stop();
clrscrn();
printf(" The nonzero rows vectors of Ab without b\n"
" form a basis for the row space of A \n\n"
" Ab :");
p_mR(Ab,S7,P3,C10);
printf(" gj_PP_mR(Ab,NO) :");
gj_PP_mR(Ab,NO);
p_mR(Ab,S7,P3,C10);
c_Ab_A_mR(Ab,A);
c_r_mR(A,R1,B,R1);
c_r_mR(A,R2,B,R2);
c_r_mR(A,R3,B,R3);
c_r_mR(A,R4,B,R4);
printf(" B : Basis for a Row Space of A by Row Reduction");
p_mR(B,S7,P3,C10);
stop();
f_mR(Ab);
f_mR(b);
f_mR(A);
f_mR(B);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.
Exemple de sortie écran :
Basis for a Row Space by Row Reduction :
A :
+34.0 -85.0 +51.0 -136.0 +34.0 +34.0
+55.0 -99.0 +66.0 -99.0 +66.0 +22.0
+35.0 -63.0 +42.0 -63.0 +42.0 +49.0
-70.0 +126.0 -42.0 +112.0 -28.0 -28.0
b :
+0.0
+0.0
+0.0
+0.0
Ab :
+34.0 -85.0 +51.0 -136.0 +34.0 +34.0 +0.0
+55.0 -99.0 +66.0 -99.0 +66.0 +22.0 +0.0
+35.0 -63.0 +42.0 -63.0 +42.0 +49.0 +0.0
-70.0 +126.0 -42.0 +112.0 -28.0 -28.0 +0.0
Press return to continue.
The nonzero rows vectors of Ab without b
form a basis for the row space of A
Ab :
+34.000 -85.000 +51.000 -136.000 +34.000 +34.000 +0.000
+55.000 -99.000 +66.000 -99.000 +66.000 +22.000 +0.000
+35.000 -63.000 +42.000 -63.000 +42.000 +49.000 +0.000
-70.000 +126.000 -42.000 +112.000 -28.000 -28.000 +0.000
gj_PP_mR(Ab,NO) :
+1.000 -1.800 +0.600 -1.600 +0.400 +0.400 -0.000
-0.000 +1.000 -1.286 +3.429 -0.857 -0.857 -0.000
+0.000 +0.000 +1.000 -0.333 +1.333 +0.000 +0.000
+0.000 +0.000 +0.000 +0.000 -0.000 +1.000 +0.000
B : Basis for a Row Space of A by Row Reduction
+1.000 -1.800 +0.600 -1.600 +0.400 +0.400
-0.000 +1.000 -1.286 +3.429 -0.857 -0.857
+0.000 +0.000 +1.000 -0.333 +1.333 +0.000
+0.000 +0.000 +0.000 +0.000 -0.000 +1.000
Press return to continue.