Aller au contenu

Mathc matrices/c21w

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00a.c
/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define  RA    R4
#define  CA    C6
#define  Cb    C1
/* ------------------------------------ */
#define  CbFREE Cb+C2                
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
  +34,   -85,   +51,  -136,   +34,   +34,    +0, 
  +55,   -99,   +66,   -99,   +66,   +22,    +0, 
  +35,   -63,   +42,   -63,   +42,   +49,    +0, 
  -70,  +126,   -42,  +112,   -28,   -28,    +0      
};

double **Ab =   ca_A_mR(ab, i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,           i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,           i_mR(RA,Cb));

double **Ab_free =          i_Abr_Ac_bc_mR(CA,CA,CbFREE);
double **b_free  =                    i_mR(CA,CbFREE); 
double **A_bfree =                    i_mR(RA,CbFREE);

int r;

  clrscrn();
  printf("Find a basis for the orthogonal complement of A :\n\n");
  printf(" A :");
  p_mR(A,S6,P1,C10);
  printf(" b :");
  p_mR(b,S6,P1,C10);
  printf(" Ab :");
  p_mR(Ab,S6,P1,C10);
  stop();

  clrscrn();
  printf(" Ab :  gj_PP_mR(Ab,NO) :");
  gj_PP_mR(Ab,NO);
  p_mR(Ab,S7,P3,C10);
  
  put_zeroR_mR(Ab,Ab_free);  
  printf(" Ab_free : put_zeroR_mR(Ab,Ab_free);");  
  p_mR(Ab_free,S7,P3,C10);  

  put_freeV_mR(Ab_free);
  printf(" Ab_free : put_freeV_mR(Ab_free);");  
  p_mR(Ab_free,S7,P3,C10);  
  stop();
  
  clrscrn();  
  r = rsize_R(Ab_free);
  while(r>R1)    
        zero_below_pivot_gj1Ab_mR(Ab_free,r--);
        
  printf(" Ab_free : zero_below_pivot_gj1Ab_mR(Ab_free,r--);");  
  p_mR(Ab_free,S7,P3,C10);  

  c_Ab_b_mR(Ab_free,b_free);
  printf(" b_free :"); 
  p_mR(b_free,S10,P3,C7);
  stop();	
  
  clrscrn();
  printf(" A :");
  p_mR(A,S10,P3,C10);
  printf(" b_free :"); 
  p_mR(b_free,S10,P3,C7);
  printf(" A * bfree :"); 
  p_mR(mul_mR(A,b_free,A_bfree),S10,P3,C7);
  stop();
  
  f_mR(Ab);
  f_mR(A);
  f_mR(b);
      
  f_mR(Ab_free);
  f_mR(b_free);
  f_mR(A_bfree);
  
  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


On commence par calculer les variables libres.

Les colonnes de b_free sont une base pour le complément orthogonal de A.

          A * b_free = 0

Cela prouve que les vecteurs lignes de A sont orthogonaux aux vecteurs colonnes de b_free.



Exemple de sortie écran :
Find a basis for the orthogonal complement of A :

 A :
 +34.0  -85.0  +51.0 -136.0  +34.0  +34.0 
 +55.0  -99.0  +66.0  -99.0  +66.0  +22.0 
 +35.0  -63.0  +42.0  -63.0  +42.0  +49.0 
 -70.0 +126.0  -42.0 +112.0  -28.0  -28.0 

 b :
  +0.0 
  +0.0 
  +0.0 
  +0.0 

 Ab :
 +34.0  -85.0  +51.0 -136.0  +34.0  +34.0   +0.0 
 +55.0  -99.0  +66.0  -99.0  +66.0  +22.0   +0.0 
 +35.0  -63.0  +42.0  -63.0  +42.0  +49.0   +0.0 
 -70.0 +126.0  -42.0 +112.0  -28.0  -28.0   +0.0 

 Press return to continue. 


 Ab :  gj_PP_mR(Ab,NO) :
 +1.000  -1.800  +0.600  -1.600  +0.400  +0.400  -0.000 
 -0.000  +1.000  -1.286  +3.429  -0.857  -0.857  -0.000 
 +0.000  +0.000  +1.000  -0.333  +1.333  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  -0.000  +1.000  +0.000 

 Ab_free : put_zeroR_mR(Ab,Ab_free);
 +1.000  -1.800  +0.600  -1.600  +0.400  +0.400  -0.000  +0.000  +0.000 
 -0.000  +1.000  -1.286  +3.429  -0.857  -0.857  -0.000  +0.000  +0.000 
 +0.000  +0.000  +1.000  -0.333  +1.333  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  -0.000  +1.000  +0.000  +0.000  +0.000 

 Ab_free : put_freeV_mR(Ab_free);
 +1.000  -1.800  +0.600  -1.600  +0.400  +0.400  -0.000  +0.000  +0.000 
 -0.000  +1.000  -1.286  +3.429  -0.857  -0.857  -0.000  +0.000  +0.000 
 +0.000  +0.000  +1.000  -0.333  +1.333  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000 
 +0.000  +0.000  +0.000  +0.000  -0.000  +1.000  +0.000  +0.000  +0.000 

 Press return to continue. 


 Ab_free : zero_below_pivot_gj1Ab_mR(Ab_free,r--);
 +1.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  -4.000  -1.143 
 +0.000  +1.000  +0.000  +0.000  +0.000  +0.000  +0.000  -3.000  -0.857 
 +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +0.000  +0.333  -1.333 
 +0.000  +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000 
 +0.000  +0.000  +0.000  +0.000  -0.000  +1.000  +0.000  +0.000  +0.000 

 b_free :
    +0.000     -4.000     -1.143 
    +0.000     -3.000     -0.857 
    +0.000     +0.333     -1.333 
    +0.000     +1.000     +0.000 
    +0.000     +0.000     +1.000 
    +0.000     +0.000     +0.000 

 Press return to continue. 


 A :
   +34.000    -85.000    +51.000   -136.000    +34.000    +34.000 
   +55.000    -99.000    +66.000    -99.000    +66.000    +22.000 
   +35.000    -63.000    +42.000    -63.000    +42.000    +49.000 
   -70.000   +126.000    -42.000   +112.000    -28.000    -28.000 

 b_free :
    +0.000     -4.000     -1.143 
    +0.000     -3.000     -0.857 
    +0.000     +0.333     -1.333 
    +0.000     +1.000     +0.000 
    +0.000     +0.000     +1.000 
    +0.000     +0.000     +0.000 

 A * bfree :
    +0.000     +0.000     -0.000 
    +0.000     -0.000     -0.000 
    +0.000     -0.000     -0.000 
    +0.000     +0.000     +0.000 

 Press return to continue.