Mathc matrices/c21t
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RA R4
#define CA C6
#define Cb C1
/* ------------------------------------ */
#define CbFREE Cb+C3
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
+1, 3, -2, 0, +2, +0, 0,
+2, 6, -5, -2, +4, -3, 0,
0, 0, +5, 10, 0, 15, 0,
2, 6, 0, 8, 4, 18, 0,
};
double **Ab = ca_A_mR(ab, i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab, i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab, i_mR(RA,Cb));
double **Ab_free = i_Abr_Ac_bc_mR(CA,CA,CbFREE);
double **b_free = i_mR(CA,CbFREE);
double **A_bfree = i_mR(RA,CbFREE);
int r;
clrscrn();
printf("Find a basis for the orthogonal complement of A :\n\n");
printf(" A :");
p_mR(A,S6,P1,C10);
printf(" b :");
p_mR(b,S6,P1,C10);
printf(" Ab :");
p_mR(Ab,S6,P1,C10);
stop();
clrscrn();
printf(" Ab : gj_PP_mR(Ab,NO) :");
gj_PP_mR(Ab,NO);
p_mR(Ab,S7,P3,C10);
put_zeroR_mR(Ab,Ab_free);
printf(" Ab_free : put_zeroR_mR(Ab,Ab_free);");
p_mR(Ab_free,S7,P3,C10);
put_freeV_mR(Ab_free);
printf(" Ab_free : put_freeV_mR(Ab_free);");
p_mR(Ab_free,S7,P3,C10);
stop();
clrscrn();
r = rsize_R(Ab_free);
while(r>R1)
zero_below_pivot_gj1Ab_mR(Ab_free,r--);
printf(" Ab_free : zero_below_pivot_gj1Ab_mR(Ab_free,r--);");
p_mR(Ab_free,S7,P3,C10);
c_Ab_b_mR(Ab_free,b_free);
printf(" b_free :");
p_mR(b_free,S10,P3,C7);
stop();
clrscrn();
printf(" A :");
p_mR(A,S10,P3,C10);
printf(" b_free :");
p_mR(b_free,S10,P3,C7);
printf(" A * bfree :");
p_mR(mul_mR(A,b_free,A_bfree),S10,P3,C7);
stop();
f_mR(Ab);
f_mR(A);
f_mR(b);
f_mR(Ab_free);
f_mR(b_free);
f_mR(A_bfree);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
On commence par calculer les variables libres.
Les colonnes de b_free sont une base pour le complément orthogonal de A.
A * b_free = 0
Cela prouve que les vecteurs lignes de A sont orthogonaux aux vecteurs colonnes de b_free.
Exemple de sortie écran :
Find a basis for the orthogonal complement of A :
A :
+1.0 +3.0 -2.0 +0.0 +2.0 +0.0
+2.0 +6.0 -5.0 -2.0 +4.0 -3.0
+0.0 +0.0 +5.0 +10.0 +0.0 +15.0
+2.0 +6.0 +0.0 +8.0 +4.0 +18.0
b :
+0.0
+0.0
+0.0
+0.0
Ab :
+1.0 +3.0 -2.0 +0.0 +2.0 +0.0 +0.0
+2.0 +6.0 -5.0 -2.0 +4.0 -3.0 +0.0
+0.0 +0.0 +5.0 +10.0 +0.0 +15.0 +0.0
+2.0 +6.0 +0.0 +8.0 +4.0 +18.0 +0.0
Press return to continue.
Ab : gj_PP_mR(Ab,NO) :
+1.000 +3.000 -2.500 -1.000 +2.000 -1.500 +0.000
+0.000 +0.000 +1.000 +2.000 +0.000 +3.000 +0.000
+0.000 +0.000 +0.000 +0.000 +0.000 +1.000 +0.000
+0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000
Ab_free : put_zeroR_mR(Ab,Ab_free);
+1.000 +3.000 -2.500 -1.000 +2.000 -1.500 +0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +1.000 +2.000 +0.000 +3.000 +0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +0.000
Ab_free : put_freeV_mR(Ab_free);
+1.000 +3.000 -2.500 -1.000 +2.000 -1.500 +0.000 +0.000 +0.000 +0.000
+0.000 +1.000 +0.000 +0.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000
+0.000 +0.000 +1.000 +2.000 +0.000 +3.000 +0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +0.000 +1.000 +0.000
+0.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +0.000 +1.000
+0.000 +0.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +0.000
Press return to continue.
Ab_free : zero_below_pivot_gj1Ab_mR(Ab_free,r--);
+1.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 -3.000 -4.000 -2.000
+0.000 +1.000 +0.000 +0.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000
+0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +0.000 +0.000 -2.000 +0.000
+0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +0.000 +1.000 +0.000
+0.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +0.000 +1.000
+0.000 +0.000 +0.000 +0.000 +0.000 +1.000 +0.000 +0.000 +0.000 +0.000
b_free :
+0.000 -3.000 -4.000 -2.000
+0.000 +1.000 +0.000 +0.000
+0.000 +0.000 -2.000 +0.000
+0.000 +0.000 +1.000 +0.000
+0.000 +0.000 +0.000 +1.000
+0.000 +0.000 +0.000 +0.000
Press return to continue.
A :
+1.000 +3.000 -2.000 +0.000 +2.000 +0.000
+2.000 +6.000 -5.000 -2.000 +4.000 -3.000
+0.000 +0.000 +5.000 +10.000 +0.000 +15.000
+2.000 +6.000 +0.000 +8.000 +4.000 +18.000
b_free :
+0.000 -3.000 -4.000 -2.000
+0.000 +1.000 +0.000 +0.000
+0.000 +0.000 -2.000 +0.000
+0.000 +0.000 +1.000 +0.000
+0.000 +0.000 +0.000 +1.000
+0.000 +0.000 +0.000 +0.000
A * bfree :
+0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +0.000 +0.000
+0.000 +0.000 +0.000 +0.000
Press return to continue.