Mathc matrices/Conclusion
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define TAB C2
#define RCA R5
#define POW 3
/* ------------------------------------ */
void fun(void)
{
double **A[TAB];
double **A_n[TAB];
double **P = r_mR( i_mR(RCA,RCA),99);
double **InvP = inv_mR(P,i_mR(RCA,RCA) );
double **T = i_mR(RCA,RCA);
double **P_1A0_nP = i_mR(RCA,RCA);
int c;
for(c=C0; c<TAB; c++)
{
A[c] = i_mR(RCA,RCA);
A_n[c] = i_mR(RCA,RCA);
}
rsymmetric_mR(A[R0],99);
mul_mR(InvP,A[C0],T);
mul_mR(T,P,A[C0+C1]);
clrscrn();
printf(" The two similar matrices :\n\n"
" A[%d] = P**(-1) A[%d] P \n\n",C1,C0);
for(c=C0; c<TAB; c++)
{
printf(" A[%d] : ",c);
p_mR(A[c],S12,P2,C6);
}
stop();
clrscrn();
printf(" The two similar matrices at the power %d : \n\n",POW);
for(c=C0; c<TAB; c++)
{
printf(" A[%d]**%d : ", c, POW);
p_mR(pow_mR(POW,A[c],A_n[c]),S12,P2,C6);
}
stop();
clrscrn();
mul_mR(InvP,A_n[C0],T);
mul_mR(T,P,P_1A0_nP);
printf(" A[%d]**%d = P**(-1) A[%d]**%d P \n\n",C1,POW,C0,POW);
printf(" A[%d]**%d : ",C1,POW);
p_mR(A_n[1],S12,P2,C6);
printf(" P**(-1) A[%d]**%d P : ",C0,POW);
p_mR(P_1A0_nP,S12,P2,C6);
for(c=C0; c<TAB; c++)
{
f_mR(A[c]);
f_mR(A_n[c]);
}
f_mR(P);
f_mR(InvP);
f_mR(T);
f_mR(P_1A0_nP);
}
/* ------------------------------------ */
int main(void)
{
time_t t;
srand(time(&t));
do{
fun();
}while(stop_w());
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Je crée une suite de deux Matrices semblables.
Exemple de sortie écran :
--------------------------------
The two similar matrices :
A[1] = P**(-1) A[0] P
A[0] :
+29.00 -77.00 +45.00 -74.00 -27.00
-77.00 +97.00 +32.00 -39.00 -76.00
+45.00 +32.00 +49.00 +23.00 -10.00
-74.00 -39.00 +23.00 -98.00 +15.00
-27.00 -76.00 -10.00 +15.00 +51.00
A[1] :
+103.84 -111.24 -65.95 +38.92 +149.11
-137.12 +84.12 +120.63 -88.89 -199.79
-24.95 -45.63 +148.34 +10.03 -37.67
-63.02 +34.48 -110.99 +59.29 +40.05
-131.71 -58.86 +363.13 -123.27 -267.59
Press return to continue.
--------------------------------
The two similar matrices at the power 3 :
A[0]**3 :
-30672.00 -1992633.00 +729395.00 -1813684.00 +91301.00
-1992633.00 +3142748.00 +883337.00 -1325859.00 -2152815.00
+729395.00 +883337.00 +223096.00 +635911.00 -438915.00
-1813684.00 -1325859.00 +635911.00 -2629723.00 -117009.00
+91301.00 -2152815.00 -438915.00 -117009.00 +1292466.00
A[1]**3 :
+3494166.41 -3861208.26 +492142.85 +2273488.18 +4542536.54
-4091855.44 +2756738.67 +1157665.66 -2942938.58 -5525979.72
-888939.54 -1341121.19 +2226323.60 -17675.49 -794180.62
-624296.29 +4116163.40 -3634926.25 +56097.66 -384945.31
-4787757.10 -3125114.03 +7645514.00 -3405747.19 -6535411.35
Press return to continue.
--------------------------------
A[1]**3 = P**(-1) A[0]**3 P
A[1]**3 :
+3494166.41 -3861208.26 +492142.85 +2273488.18 +4542536.54
-4091855.44 +2756738.67 +1157665.66 -2942938.58 -5525979.72
-888939.54 -1341121.19 +2226323.60 -17675.49 -794180.62
-624296.29 +4116163.40 -3634926.25 +56097.66 -384945.31
-4787757.10 -3125114.03 +7645514.00 -3405747.19 -6535411.35
P**(-1) A[0]**3 P :
+3494166.41 -3861208.26 +492142.85 +2273488.18 +4542536.54
-4091855.44 +2756738.67 +1157665.66 -2942938.58 -5525979.72
-888939.54 -1341121.19 +2226323.60 -17675.49 -794180.62
-624296.29 +4116163.40 -3634926.25 +56097.66 -384945.31
-4787757.10 -3125114.03 +7645514.00 -3405747.19 -6535411.35
Press return to continue
Press X return to stop