Mathc matrices/068
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RA R4
#define CA C6
#define Cb C1
/* ------------------------------------ */
#define CB C2 /* B : a basis for the column space of A */
/* ------------------------------------ */
#define CbFREE Cb+C3
/* ------------------------------------ */
#define Cx C2
#define Cy C4
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
+9, -15, +21, -18, +6, +27, +0,
-18, +30, -42, +36, -12, -54, +0,
+21, -35, +49, -42, +14, +63, +0,
-6, +10, -14, +12, -4, -18, +0
};
double **Ab = ca_A_mR(ab, i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab, i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab, i_mR(RA,Cb));
double **AT = transpose_mR(A, i_mR(CA,RA));
double **B = i_mR(RA,CB);
double **BT = i_mR(CB,RA);
double **BTb = i_Abr_Ac_bc_mR(CB,RA,Cb);
double **BTb_free = i_Abr_Ac_bc_mR(RA,RA,CbFREE);
double **b_free = i_mR(RA,CbFREE);
double **cx = i_mR(RA,C1);
double **cy = i_mR(RA,C1);
double **cxplscy = i_mR(RA,C1);
double **AT_cxplscy = i_mR(CA,C1) ;
int r;
clrscrn();
printf(" Verify if the sum of two columns of b_free\n"
" is orthogonal to AT :\n\n");
printf(" A :");
p_mR(A,S6,P1,C10);
printf(" AT :");
p_mR(AT, S7,P3,C10);
stop();
gj_PP_mR(Ab,NO);
c_c_mR(A,C1,B,C1);
transpose_mR(B,BT);
c_mR(BT,BTb);
gj_PP_mR(BTb,NO);
put_zeroR_mR(BTb,BTb_free);
put_freeV_mR(BTb_free);
r = rsize_R(BTb_free);
while(r>R1)
zero_below_pivot_gj1Ab_mR(BTb_free,r--);
c_Ab_b_mR(BTb_free,b_free);
clrscrn();
printf(" b_free :");
p_mR(b_free, S7,P3,C10);
c_c_mR(b_free,Cx,cx,C1);
c_c_mR(b_free,Cy,cy,C1);
add_mR(cx,cy,cxplscy);
printf(" C%d + C%d :",Cx,Cy);
p_mR(cxplscy,S10,P3,C7);
printf(" AT * (C%d+C%d) :",Cx,Cy);
p_mR(mul_mR(AT,cxplscy,AT_cxplscy),S10,P9,C7);
stop();
f_mR(Ab);
f_mR(A);
f_mR(b);
f_mR(AT);
f_mR(B);
f_mR(BT);
f_mR(BTb);
f_mR(BTb_free);
f_mR(b_free);
f_mR(cx);
f_mR(cy);
f_mR(cxplscy);
f_mR(AT_cxplscy);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
On peut sélectionner les colonnes de travail dans le code ci-dessous.
#define Cx C3
#define Cy C4
Exemple de sortie écran :
Verify if the sum of two columns of b_free
is orthogonal to AT :
A :
+9.0 -15.0 +21.0 -18.0 +6.0 +27.0
-18.0 +30.0 -42.0 +36.0 -12.0 -54.0
+21.0 -35.0 +49.0 -42.0 +14.0 +63.0
-6.0 +10.0 -14.0 +12.0 -4.0 -18.0
AT :
+9.000 -18.000 +21.000 -6.000
-15.000 +30.000 -35.000 +10.000
+21.000 -42.000 +49.000 -14.000
-18.000 +36.000 -42.000 +12.000
+6.000 -12.000 +14.000 -4.000
+27.000 -54.000 +63.000 -18.000
Press return to continue.
b_free :
+0.000 +2.000 -2.333 +0.667
+0.000 +1.000 +0.000 +0.000
+0.000 +0.000 +1.000 +0.000
+0.000 +0.000 +0.000 +1.000
C2 + C4 :
+2.667
+1.000
+0.000
+1.000
AT * (C2+C4) :
+0.000000000
+0.000000000
+0.000000000
+0.000000000
+0.000000000
+0.000000000
Press return to continue.