Aller au contenu

Mathc matrices/064

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00a.c
/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RA     R4
#define CA     C6
#define Cb     C1
/* ------------------------------------ */
#define CB     C3            /* B : a basis for the column space of A */
/* ------------------------------------ */
#define CbFREE Cb+C1
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
   +2,    -6,    +8,    -4,   +10,    +8,    +0, 
  +10,   -30,   +45,    -5,   +40,   +10,    +0, 
  +14,   -42,   +63,    -7,   +63,   +49,    +0, 
   -3,    +9,   -12,    +6,   -15,   -12,    +0  
};

double **Ab =      ca_A_mR(ab, i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  =    c_Ab_A_mR(Ab,           i_mR(RA,CA));
double **b  =    c_Ab_b_mR(Ab,           i_mR(RA,Cb));

double **AT = transpose_mR(A,            i_mR(CA,RA));

double **B   =                           i_mR(RA,CB);
double **BT  =                           i_mR(CB,RA);
double **BTb =                 i_Abr_Ac_bc_mR(CB,RA,Cb); 

double **BTb_free =            i_Abr_Ac_bc_mR(RA,RA,CbFREE);
double **b_free   =                      i_mR(RA,CbFREE);

double **AT_bfree =                      i_mR(CA,CbFREE);

int r;

  clrscrn();
  printf("Basis for a Column Space by Row Reduction :\n\n");
  printf(" A :");
  p_mR(A,S6,P1,C10);
  printf(" b :");
  p_mR(b,S6,P1,C10);
  printf(" Ab :");
  p_mR(Ab,S6,P1,C10);
  stop();

  clrscrn();
  
  printf(" The leading 1’s of Ab give the position \n"
         " of the columns of A  which form a basis \n"
         " for the column space of A \n\n"
         " A :");
  p_mR(A,S7,P3,C10);
  printf(" gj_PP_mR(Ab,NO) :");
  gj_PP_mR(Ab,NO);
  p_mR(Ab,S7,P3,C10); 
  
  c_c_mR(A,C1,B,C1);
  c_c_mR(A,C3,B,C2);
  c_c_mR(A,C5,B,C3);
  
  printf(" B :  a basis for the column space of A");
  p_mR(B,S7,P3,C10); 
  stop();
        
  clrscrn();   
  printf(" Check if the columns of B are linearly independent\n\n");         
  printf(" B :");
  p_mR(B, S7,P3,C10); 
  printf(" BT :");  
  p_mR(transpose_mR(B,BT), S7,P3,C10);   
  printf(" BTb :");
  p_mR(c_mR(BT,BTb), S7,P3,C10);  
  printf(" gj_PP_FreeV_mZ(BTb) :");
  p_mR(gj_PP_mR(BTb,NO), S7,P3,C10);    
  stop();
        
  clrscrn(); 
  put_zeroR_mR(BTb,BTb_free);  
  printf(" BTb_free : put_zeroR_mR(BTb,BTb_free);");  
  p_mR(BTb_free,S7,P3,C10); 
  put_freeV_mR(BTb_free);
  printf(" BTb_free : put_freeV_mR(BTb_free);");  
  p_mR(BTb_free,S7,P3,C10);  
  stop();
  
  clrscrn();  
  r = rsize_R(BTb_free);
  while(r>R1)    
        zero_below_pivot_gj1Ab_mR(BTb_free,r--);
        
  printf(" Ab_free : zero_below_pivot_gj1Ab_mR(Ab_free,r--);");  
  p_mR(BTb_free,S7,P3,C10); 

  c_Ab_b_mR(BTb_free,b_free);
  printf(" b_free : A basis for the null space of AT"); 
  p_mR(b_free,S10,P3,C7);
  printf(" b_free : ");
  p_freeV(b_free,S6,P3);
  stop();	

  clrscrn();
  printf(" AT :");
  p_mR(AT, S7,P3,C10); 
  printf(" b_free :"); 
  p_mR(b_free, S7,P3,C10); 
  printf(" AT * bfree :"); 
  p_mR(mul_mR(AT,b_free,AT_bfree), S7,P3,C10); 
  stop();
         
  f_mR(Ab);
  f_mR(A);
  f_mR(b);

  f_mR(AT);
    
  f_mR(B);
  f_mR(BT);
  f_mR(BTb);
  
  f_mR(BTb_free);
  f_mR(b_free);    
  f_mR(AT_bfree);    
     
  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Si B une base de l'espace colonnes de A, les vecteurs libres du système BTb, seront une base pour le complément orthogonal de AT.


Exemple de sortie écran :
Basis for a Column Space by Row Reduction :

 A :
  +2.0   -6.0   +8.0   -4.0  +10.0   +8.0 
 +10.0  -30.0  +45.0   -5.0  +40.0  +10.0 
 +14.0  -42.0  +63.0   -7.0  +63.0  +49.0 
  -3.0   +9.0  -12.0   +6.0  -15.0  -12.0 

 b :
  +0.0 
  +0.0 
  +0.0 
  +0.0 

 Ab :
  +2.0   -6.0   +8.0   -4.0  +10.0   +8.0   +0.0 
 +10.0  -30.0  +45.0   -5.0  +40.0  +10.0   +0.0 
 +14.0  -42.0  +63.0   -7.0  +63.0  +49.0   +0.0 
  -3.0   +9.0  -12.0   +6.0  -15.0  -12.0   +0.0 

 Press return to continue. 


 The leading 1s of Ab give the position 
 of the columns of A  which form a basis 
 for the column space of A 

 A :
 +2.000  -6.000  +8.000  -4.000 +10.000  +8.000 
+10.000 -30.000 +45.000  -5.000 +40.000 +10.000 
+14.000 -42.000 +63.000  -7.000 +63.000 +49.000 
 -3.000  +9.000 -12.000  +6.000 -15.000 -12.000 

 gj_PP_mR(Ab,NO) :
 +1.000  -3.000  +4.500  -0.500  +4.500  +3.500  +0.000 
 +0.000  +0.000  +1.000  +3.000  -1.000  -1.000  +0.000 
 -0.000  -0.000  -0.000  -0.000  +1.000  +5.000  -0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 

 B :  a basis for the column space of A
 +2.000  +8.000 +10.000 
+10.000 +45.000 +40.000 
+14.000 +63.000 +63.000 
 -3.000 -12.000 -15.000 

 Press return to continue. 


 Check if the columns of B are linearly independent

 B :
 +2.000  +8.000 +10.000 
+10.000 +45.000 +40.000 
+14.000 +63.000 +63.000 
 -3.000 -12.000 -15.000 

 BT :
 +2.000 +10.000 +14.000  -3.000 
 +8.000 +45.000 +63.000 -12.000 
+10.000 +40.000 +63.000 -15.000 

 BTb :
 +2.000 +10.000 +14.000  -3.000  +0.000 
 +8.000 +45.000 +63.000 -12.000  +0.000 
+10.000 +40.000 +63.000 -15.000  +0.000 

 gj_PP_FreeV_mZ(BTb) :
 +1.000  +4.000  +6.300  -1.500  +0.000 
 +0.000  +1.000  +0.969  +0.000  +0.000 
 -0.000  -0.000  +1.000  -0.000  -0.000 

 Press return to continue. 


 BTb_free : put_zeroR_mR(BTb,BTb_free);
 +1.000  +4.000  +6.300  -1.500  +0.000  +0.000 
 +0.000  +1.000  +0.969  +0.000  +0.000  +0.000 
 -0.000  -0.000  +1.000  -0.000  -0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 

 BTb_free : put_freeV_mR(BTb_free);
 +1.000  +4.000  +6.300  -1.500  +0.000  +0.000 
 +0.000  +1.000  +0.969  +0.000  +0.000  +0.000 
 -0.000  -0.000  +1.000  -0.000  -0.000  +0.000 
 +0.000  +0.000  +0.000  +1.000  +0.000  +1.000 

 Press return to continue. 


 Ab_free : zero_below_pivot_gj1Ab_mR(Ab_free,r--);
 +1.000  +0.000  +0.000  +0.000  +0.000  +1.500 
 +0.000  +1.000  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +1.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +1.000  +0.000  +1.000 

 b_free : A basis for the null space of AT
    +0.000     +1.500 
    +0.000     +0.000 
    +0.000     +0.000 
    +0.000     +1.000 

 b_free : 
 x1 =  +0.000 +1.500*u
 x2 =  +0.000 +0.000*u
 x3 =  +0.000 +0.000*u
 x4 =  +0.000 +1.000*u

 Press return to continue. 


 AT :
 +2.000 +10.000 +14.000  -3.000 
 -6.000 -30.000 -42.000  +9.000 
 +8.000 +45.000 +63.000 -12.000 
 -4.000  -5.000  -7.000  +6.000 
+10.000 +40.000 +63.000 -15.000 
 +8.000 +10.000 +49.000 -12.000 

 b_free :
 +0.000  +1.500 
 +0.000  +0.000 
 +0.000  +0.000 
 +0.000  +1.000 

 AT * bfree :
 +0.000  +0.000 
 +0.000  +0.000 
 +0.000  +0.000 
 +0.000  +0.000 
 +0.000  +0.000 
 +0.000  +0.000 

 Press return to continue.