Mathc matrices/053
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RCA RC3
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double a[RCA*RCA] ={
+0.944444444444, -0.144444444444, +0.177777777778,
-0.144444444444, +0.624444444444, +0.462222222222,
+0.177777777778, +0.462222222222, +0.431111111111
};
double v[RCA*RCA] ={
-0.933345606203, +0.954479978035, -0.235702260396,
+0.358979079309, +0.000000000000, -0.612825877028,
+0.000000000000, +0.298274993136, +0.754247233266
};
double **A = ca_A_mR(a, i_mR(RCA,RCA));
double **V = ca_A_mR(v, i_mR(RCA,RCA));
double **invV = invgj_mR(V, i_mR(RCA,RCA));
double **EValue = i_mR(RCA,RCA);
double **T = i_mR(RCA,RCA);
clrscrn();
printf(" A :");
p_mR(A, S8,P6, C3);
printf(" V :");
p_mR(V, S9,P6, C4);
printf(" EValue = invV * A * V");
mul_mR(invV,A,T);
mul_mR(T,V,EValue);
p_mR(EValue, S9,P6, C4);
printf(" A = V * EValue * invV");
mul_mR(V,EValue,T);
mul_mR(T,invV,A);
p_mR(A, S8,P6, C3);
stop();
clrscrn();
printf(" The matrix A projects the space in the direction\n"
" of the eigenvector V3 on a plan determined by\n"
" the eigenvector V1 and V2 if :\n\n"
" The eigenvector V1 has its eigenvalue equal to one and \n"
" The eigenvector V2 has its eigenvalue equal to one and \n"
" The eigenvector V3 has its eigenvalue equal to zero and \n\n"
" If The vectors V1 and V2 and V3 are linearly independent\n\n"
" det(V) = %.5e\n\n",det_R(V));
stop();
f_mR(A);
f_mR(V);
f_mR(invV);
f_mR(T);
f_mR(EValue);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Vérifier les calculs.
Exemple de sortie écran :
A :
+0.944444 -0.144444 +0.177778
-0.144444 +0.624444 +0.462222
+0.177778 +0.462222 +0.431111
V :
-0.933346 +0.954480 -0.235702
+0.358979 +0.000000 -0.612826
+0.000000 +0.298275 +0.754247
EValue = invV * A * V
+1.000000 +0.000000 +0.000000
-0.000000 +1.000000 +0.000000
+0.000000 -0.000000 -0.000000
A = V * EValue * invV
+0.944444 -0.144444 +0.177778
-0.144444 +0.624444 +0.462222
+0.177778 +0.462222 +0.431111
Press return to continue.
The matrix A projects the space in the direction
of the eigenvector V3 on a plan determined by
the eigenvector V1 and V2 if :
The eigenvector V1 has its eigenvalue equal to one and
The eigenvector V2 has its eigenvalue equal to one and
The eigenvector V3 has its eigenvalue equal to zero and
If The vectors V1 and V2 and V3 are linearly independent
det(V) = 6.00000e-01
Press return to continue.