Mathc matrices/04v
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RCA RC2
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double a[RCA*RCA] ={
+0.500000000000, -0.500000000000,
-0.500000000000, +0.500000000000
};
double v[RCA*RCA] ={
-0.707106781187, +0.707106781187,
+0.707106781187, +0.707106781187
};
double **A = ca_A_mR(a, i_mR(RCA,RCA));
double **V = ca_A_mR(v, i_mR(RCA,RCA));
double **invV = invgj_mR(V, i_mR(RCA,RCA));
double **EValue = i_mR(RCA,RCA);
double **T = i_mR(RCA,RCA);
clrscrn();
printf(" A :");
p_mR(A, S8,P6, C3);
printf(" V :");
p_mR(V, S9,P6, C4);
printf(" EValue = invV * A * V");
mul_mR(invV,A,T);
mul_mR(T,V,EValue);
p_mR(EValue, S9,P6, C4);
printf(" A = V * EValue * invV");
mul_mR(V,EValue,T);
mul_mR(T,invV,A);
p_mR(A, S8,P6, C3);
stop();
clrscrn();
printf(" The matrix A projects the plane in the direction\n"
" of the eigenvector V2 on a line determined by\n"
" the eigenvector V1 if :\n\n"
" The eigenvector V1 has its eigenvalue equal to one and\n"
" The eigenvector V2 has its eigenvalue equal to zero and\n\n"
" If The vectors V1 and V2 are linearly independent\n\n"
" det(V) = %.2f\n\n",det_R(V));
stop();
f_mR(A);
f_mR(V);
f_mR(invV);
f_mR(T);
f_mR(EValue);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Vérifier les calculs.
Exemple de sortie écran :
A :
+0.500000 -0.500000
-0.500000 +0.500000
V :
-0.707107 +0.707107
+0.707107 +0.707107
EValue = invV * A * V
+1.000000 +0.000000
+0.000000 +0.000000
A = V * EValue * invV
+0.500000 -0.500000
-0.500000 +0.500000
Press return to continue.
The matrix A projects the plane in the direction
of the eigenvector V2 on a line determined by
the eigenvector V1 if :
The eigenvector V1 has its eigenvalue equal to one and
The eigenvector V2 has its eigenvalue equal to zero and
If The vectors V1 and V2 are linearly independent
det(V) = -1.00
Press return to continue.