Mathc matrices/03e
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RCA C3
/* ------------------------------------ */
int main(void)
{
double a[RCA*RCA]={
+3,-5,+3,
-5,+4,+4,
+3,+4,+7
};
double R = 6;
double **A = ca_A_mR(a,i_mR(RCA,RCA));
double **EigsVector = i_mR(RCA,RCA);
double **T_EigsVector = i_mR(RCA,RCA);
double **T1 = i_mR(RCA,RCA);
double **T2 = i_mR(RCA,RCA);
clrscrn();
printf(" If %+.0fx^2 %+.0fy^2 %+.0fz^2 "
" %+.0fxy %+.0fxz %+.0fyz= %+.0f \n\n"
" Can you give a description of the curve "
" in the standar basis?\n\n",
A[R1][C1], A[R2][C2], A[R3][C3],
2*(A[R2][C1]), 2*(A[R3][C1]), 2*(A[R3][C2]), R);
printf(" A:");
p_mR(A,S10,P4,C6);
printf(" EigsVector:");
eigs_V_mR(A,EigsVector);
p_mR(EigsVector,S10,P4,C6);
printf(" EigsValue : T_EigsVector * A * EigsVector");
transpose_mR(EigsVector,T_EigsVector);
mul_mR(T_EigsVector,A,T1);
mul_mR(T1,EigsVector,T2);
p_mR(T2,S10,P4,C6);
printf(" Then : %+.3f x^2 %+.3f y^2 %+.3f z^2 = %.3f \n\n"
" It is an hyperboloid of one sheet\n\n",
T2[R1][C1], T2[R2][C2], T2[R3][C3], R);
stop();
clrscrn();
printf(" Copy/Past into the octave windows \n\n");
p_Octave_mR(A,"a",P0);
printf(" [V, E] = eigs (a,%d) \n\n",RCA);
stop();
f_mR(A);
f_mR(EigsVector);
f_mR(T_EigsVector);
f_mR(T1);
f_mR(T2);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Si l'une des valeurs propres est négative, alors l'équation de la surface est une hyperboloïde à une nappe
Exemple de sortie écran :
If +3x^2 +4y^2 +7z^2 -10xy +6xz +8yz= +6
Can you give a description of the curve in the standar basis?
A:
+3.0000 -5.0000 +3.0000
-5.0000 +4.0000 +4.0000
+3.0000 +4.0000 +7.0000
EigsVector:
-0.1309 +0.7469 +0.6519
+0.6353 -0.4417 +0.6335
+0.7611 +0.4971 -0.4167
EigsValue : T_EigsVector * A * EigsVector
+9.8227 -0.0000 -0.0000
-0.0000 +7.9534 +0.0000
+0.0000 +0.0000 -3.7761
Then : +9.823 x^2 +7.953 y^2 -3.776 z^2 = 6.000
It is an hyperboloid of one sheet
Press return to continue.