Aller au contenu

Mathc initiation/c76c

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c01c.c
/* ------------------------------------ */
/*  Save as :   c01c.c                  */
/* ------------------------------------ */
#include "x_hfile.h"
#include       "fa.h"
/* ------------------------------------ */
int main(void)
{
double i;

 clrscrn();
 printf(" The curve y = ax**2 + bx + c     (a!=0)       \n\n\n" 
        " is a branch of the curve of f at +oo if     \n\n\n\n" 
        "                 lim    f(x)                       \n" 
        "                 x->+oo ----  = a                  \n" 
        "                        x**2                   \n\n\n" 
        "                 lim    [f(x)-ax**2]               \n" 
        "          and    x->+oo ---------   = b            \n" 
        "                            x                  \n\n\n" 
        "                 lim    [f(x)-ax**2-bx] = c        \n" 
        "          and    x->+oo                        \n\n\n"); 
 stop();

 clrscrn();
 printf(" f : x-> %s\n\n\n", feq);
 printf(" Compute :   lim    [f(x)-ax**2]               \n");
 printf("             x->+oo ---------   = b (with a=1) \n");
 printf("                        x                  \n\n\n");

 for(i=1; i<10; i+=1)
 
     printf(" L2(%.0e) = %-10.0e  || L2(%.0e) = %.0e\n",
             i*100,        fbx(i*100),
             i*1000000000, fbx(i*1000000000) );
             
          
 printf(" \n\n"
        "With the computation we arrive at the "
        "following conjecture :  b = %+.1f  \n\n", 
          fbx(i*1000000000)); 
 
 stop();

 return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Exemple de sortie écran :

 The curve y = ax**2 + bx + c     (a!=0)       


 is a branch of the curve of f at +oo if     



                 lim    f(x)                       
                 x->+oo ----  = a                  
                        x**2                   


                 lim    [f(x)-ax**2]               
          and    x->+oo ---------   = b            
                            x                  


                 lim    [f(x)-ax**2-bx] = c        
          and    x->+oo                        


 Press return to continue. 


*************************


 f : x-> (-2*x**3 - 3*x**2 + 2*x + 5)/(2*x+3)


 Compute :   lim    [f(x)-ax**2]               
             x->+oo ---------   = b (with a=1) 
                        x                  


 L2(1e+02) = 1e-02       || L2(1e+09) = 0e+00
 L2(2e+02) = 5e-03       || L2(2e+09) = 0e+00
 L2(3e+02) = 3e-03       || L2(3e+09) = -3e-07
 L2(4e+02) = 3e-03       || L2(4e+09) = 0e+00
 L2(5e+02) = 2e-03       || L2(5e+09) = 0e+00
 L2(6e+02) = 2e-03       || L2(6e+09) = 0e+00
 L2(7e+02) = 1e-03       || L2(7e+09) = 0e+00
 L2(8e+02) = 1e-03       || L2(8e+09) = 0e+00
 L2(9e+02) = 1e-03       || L2(9e+09) = 2e-06
 

With the computation we arrive at the following conjecture :  b = +0.0  

 Press return to continue.