Aller au contenu

Mathc initiation/a359

Un livre de Wikilivres.


Sommaire


Installer ce fichier dans votre répertoire de travail.


Texte de la légende
fa.h
/* --------------------------------- */
/* save as fa.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* ---------------------------------- */
double f(
double x,
double y)
{
 return(    pow(x*x + y*y, 3./2.) );
}
char  feq[] = "(x**2 + y**2)**(3/2)";
/* --------------------------------- */
/* --------------------------------- */
double v(
double y)
{
 return(     (sqrt(1-y*y)) );
}
char  veq[] = "(1-y**2)**(1/2)";
/* --------------------------------- */
double u(
double y)
{
 return( ( 0) );
}
char  ueq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
double by = +1.;    char byeq[] = "+1";
double ay = -1.;    char ayeq[] = "-1";
/* ---------------------------------- */
/* ---------------------------------- */

/* ---------------------------------- */
/* --------------------------------- */
/*    Polar form : *(r) drdk         */
double h(
double r,
double k)
{
 return( (r*r*r));
}
char  heq[] = "(r**3)";
/* --------------------------------- */
/* ----------- drdk ---------------- */
double t(
double k)
{
 return( ( 1 ) );
}
char  teq[] = "1";
/* --------------------------------- */
double s(
double k)
{
 return( ( 0) );
}
char  seq[] = "0";
/* ---------------------------------- */
/* ------------ drdk ---------------- */
double bk = PI;    char bkeq[] = "PI";
double ak = 0.;    char akeq[] =  "0";
/* ---------------------------------- */
/* ---------------------------------- */
fb.h
/* --------------------------------- */
/* save as fb.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* ---------------------------------- */
double f(
double x,
double y)
{
 return(   sqrt(pow(x*x+y*y,3) + 1) );
}
char  feq[] = "((x**2 + y**2)**3) + 1)**(1/2)";
/* --------------------------------- */
/* --------------------------------- */
double v(
double x)
{
 return(       (sqrt(1-x*x)) );
}
char  veq[] = "+(1-x**2)**(1/2)";
/* --------------------------------- */
double u(
double x)
{
 return(      (-sqrt(1-x*x)) );
}
char  ueq[] = "-(1-x**2)**(1/2)";
/* ---------------------------------- */
/* ---------------------------------- */
double bx = +1.;    char bxeq[] = "+1";
double ax = -1.;    char axeq[] = "-1";
/* ---------------------------------- */
/* ---------------------------------- */

/* --------------------------------- */
/* --------------------------------- */
/*    Polar form : *(r) dkdr         */
double h(
double r,
double k)
{
 return(       sqrt(pow(r,6) + 1) );
}
char  heq[] = "(r**6 + 1)**(1/2)";
/* --------------------------------- */
/* ----------- dkdr ---------------- */
double t(
double r)
{
 return(      (2*PI) );
}
char  teq[] = "2*Pi";
/* ---------------------------------- */
double s(
double r)
{
 return(      (0) );
}
char  seq[] = "0";

/* ---------------------------------- */
/* ------------ dkdr ---------------- */
double br = 1.;    char breq[] = "1";
double ar = 0.;    char areq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */