Mathc initiation/a00ad
Apparence
Intégrer la dérivée des fonctions trigonométriques
[modifier le wikicode].
- ∫ cos(x) dx = sin(x) .............................. sin(x)' = cos(x)
- ∫ sin(x) dx = -cos(x) ............................. cos(x)' = -sin(x)
- ∫ sec(x)**2 dx = tan(x) .......................... tan(x)' = sec(x)**2
- ∫ csc(x)**2 dx = -cot(x) ......................... cot(x)' = -csc(x)**2
- ∫ sec(x)*tan(x) dx = sec(x) ................... sec(x)' = sec(x)*tan(x)
- ∫ csc(x)*cot(x) dx = -csc(x) .................. csc(x)' = -csc(x)*cot(x)
- ∫ (1 / (1 - x**2)) dx = asin(x) .................. asin(x)' = (1 / (1 -x**2))
- ∫ (1 / (x**2 + 1)) dx = atan(x) ................. atan(x)' = 1 / (x**2 + 1)
- ∫ (1 / (x sqrt(x**2 - 1))) dx = asec(x) ..... asec(x)' = 1 / (x sqrt(x**2 - 1))
.