Mathc initiation/a0066
Apparence
Vérifier quelques propriétés mathématiques de trigonométrie hyperbolique
Vérifions si : sinh(x) - sinh(y) = 2 sinh( (x-y)/2 ) cosh( (x+y)/2 )
sinh(x) - sinh(y) = 2 cosh( (x+y)/2 ) sinh( (x-y)/2 )
sinh( X ) = [e**X - e**(-X) ] / 2
sinh((x-y)/2) = [e**((x-y)/2) - e**(-(x-y)/2)] / 2
cosh( X ) = [e**X + e**(-X) ] / 2
cosh((x+y)/2) = [e**((x+y)/2) + e**(-(x+y)/2)] / 2
sinh(x) - sinh(y) = 2 cosh( (x+y)/2 ) sinh( (x-y)/2 )
sinh(x) - sinh(y) = 2 [e**((x+y)/2) + e**(-(x+y)/2)]/2 [e**((x-y)/2) - e**(-(x-y)/2)]/2
2[sinh(x) - sinh(y)] = [e**((x+y)/2) + e**(-(x+y)/2)] [e**((x-y)/2) - e**(-(x-y)/2)]
(x+y)/2 + (x-y)/2 = x
(x+y)/2 + (-(x-y)/2)) = y
-(x+y)/2) + (x-y)/2 = -y
-(x+y)/2) + (-(x-y)/2) = -x
2[sinh(x) - sinh(y)] = e**x-e**y+e**(-y)-e**(-x)
2[sinh(x) - sinh(y)] = e**x-e**(-x) - e**y+e**(-y)
2[sinh(x) - sinh(y)] = e**x-e**(-x) - [e**y-e**(-y)]
sinh(x) - sinh(y) = [e**x-e**(-x)]/2 - [e**y-e**(-y)]/2
sinh(x) - sinh(y) = sinh(x) - sinh(y)