Mathc initiation/a0022
Apparence
Vérifier quelques propriétés mathématiques de trigonométrie
Vérifions si : sin(x)cos(y) = 1/2 [sin(x-y) + sin(x+y)]
Nous avons vu que :
sin(x-y) = sin(x)cos(y) - cos(x)sin(y)
sin(x+y) = cos(x)sin(y) + sin(x)cos(y)
Donc
sin(x-y) + sin(x+y) = [sin(x)cos(y) - cos(x)sin(y)] + [cos(x)sin(y) + sin(x)cos(y)]
= sin(x)cos(y) - cos(x)sin(y) + cos(x)sin(y) + sin(x)cos(y)
= 2 sin(x)cos(y)
Soit
sin(x)cos(y) = 1/2 [sin(x-y) + sin(x+y)]