Mathc initiation/Fichiers c : c77di1
Apparence
Calculons la primitive :
/
Calculer la primitive de | sin(x)**n dx
/
Utilisons l'intégration par partie
u = ... dv = ...
du = ... v = ...
/ /
| u dv = u v - | v du
/ /
/
| sin(x)**n dx =
/
u = sin(x)**(n-1) dv = sin(x) dx
du = (n-1) sin(x)**(n-2) cos(x) dx v = (-cos(x))
(udv) (u*v) (v*du)
/ /
| sin(x)**n dx = sin(x)**(n-1) * (-cos(x)) - | (-cos(x)) * (n-1) sin(x)**(n-2) cos(x) dx
/ /
/ /
| sin(x)**n dx = - sin(x)**(n-1) * cos(x) + (n-1) | cos(x)**2 sin(x)**(n-2) dx
/ /
cos(x)**2 = (1-sin(x)**2)
/ /
| sin(x)**n dx = - sin(x)**(n-1) * cos(x) + (n-1) | (1-sin(x)**2) sin(x)**(n-2) dx
/ /
/ /
| sin(x)**n dx = - sin(x)**(n-1) * cos(x) + (n-1) | (sin(x)**(n-2) - sin(x)**n) dx
/ /
/ / /
| sin(x)**n dx = - sin(x)**(n-1) * cos(x) + (n-1) | sin(x)**(n-2) dx - (n-1) | sin(x)**n dx
/ / /
/ / / /
| sin(x)**n dx = - sin(x)**(n-1) * cos(x) + (n-1) | sin(x)**(n-2) dx - n |sin(x)**n dx + |sin(x)**n dx
/ / / /
/ /
n | sin(x)**n dx = - sin(x)**(n-1) * cos(x) + (n-1) | sin(x)**(n-2) dx
/ /
/ 1 (n-1) /
| sin(x)**n dx = (-) -- sin(x)**(n-1) * cos(x) + ----- | sin(x)**(n-2) dx
/ n n /