Aller au contenu

Mathc initiation/Fichiers c : c77cq

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c1q.c
/* --------------------------------- */
/* save as c1q.c                     */
/* --------------------------------- */
#include "x_hfile.h"
#include      "fq.h"
/* --------------------------------- */
int main(void)
{
double x  = 1.2;
double y  = 1.4;

 clrscrn();
 
 printf("  x =  %0.1f       \n",x);
 printf("  y =  %0.1f   \n\n\n",y);
 
 printf("  %s \t\t\t\t= %0.8f\n",f1eq, f1(x,y));
 printf("  %s \t= %0.8f\n\n\n",  f2eq, f2(x,y));
 

 stop();

 return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */


Vérifions par le calcul :
  x =  1.2       
  y =  1.4   


  tan(x+y) 				                = -0.60159661
  (tan(y)+tan(x))/(1-tan(x)*tan(y)) 	= -0.60159661


 Press return to continue.


Vérifions les égalités :
    Nous avons vu que :
    
    
                sin(x+y)    
    tan(x+y) =  --------
                cos(x+y)    
    
                            cos(x)sin(y)+sin(x)cos(y)   
                         =  -------------------------  
                            cos(x)cos(y)-sin(x)sin(y)   


                            cos(x)sin(y)+sin(x)cos(y)  (1/(cos(x)cos(y))
                         =  -------------------------  
                            cos(x)cos(y)-sin(x)sin(y)  (1/(cos(x)cos(y))

    
                            cos(x)sin(y)     sin(x)cos(y) 
                            ------------  +  ------------
                            cos(x)cos(y)     cos(x)cos(y)
                         =  -----------------------------  
                            cos(x)cos(y)     sin(x)sin(y)  
                            ------------  -  ------------
                            cos(x)cos(y)     cos(x)cos(y)
                            
                            
                             tan(y)       +   tan(x)
                          =  -----------------------------     
                             1            -   tan(x)tan(y)
    
    soit
    
                             tan(x) + tan(y)
                 tan(x+y)  = ----------------   
                             1 - tan(x)tan(y)