Mathc initiation/Fichiers c : c72c12
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c01j.c |
---|
/* ---------------------------------- */
/* save as c1j.c */
/* ---------------------------------- */
#include "x_hfile.h"
#include "fj.h"
/* ---------------------------------- */
int main(void)
{
int n = 2*50;
double a = 1.;
double b = 3.;
clrscrn();
printf(" With the Simpson's rule. (n = %d)\n\n"
" (%.3f\n"
" int( (%s) dx = %.6f\n"
" (%.3f\n\n\n\n",n, b, feq, simpson(f,a,b,n), a);
printf(" With the antiderivative of f.\n\n"
" F(x) = %s \n\n\n"
" F(%.3f) - F(%.3f) = %.6f \n\n\n", Feq, b,a, F(b)-F(a));
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
Calculons l'intégrale avec la fonction simpson(f,a,b,n); puis avec sa primitive F(x).
Exemple de sortie écran :
With the Simpson's rule. (n = 100)
(3.000
int( ((4*x+5)/sqrt(1+(4*x+5)**2)) dx = 1.993500
(1.000
With the antiderivative of f.
F(x) = 1./4. *sqrt(1+(4*x+5)***2)
F(3.000) - F(1.000) = 1.993500
Press return to continue.
Calculons la primitive :
Calculer la primitive de
/ (4x+5)
| ----------------- dx =
/ sqrt(1+(4x+5)**2)
__________________________
| u = 1+(4x+5)**2 |
| du = 2(4x+5)(4) dx |
| 1/8 du = (4x+5) dx |
|__________________________|
/ 1
| ----------------- (4x+5) dx =
/ sqrt(1+(4x+5)**2)
1 / 1
--- | ------ du =
8 / u**1/2
1 /
--- | u**(-1/2) du = 1/8 2 u**1/2 + c
8 /
= 1/4 (1+(4x+5)**2)**1/2 + c
Remarque 1 :
/ (4x+8)
| ----------------- dx =
/ sqrt(1+(4x+5)**2)
/ (4x+5) / 3
| ----------------- dx + | ----------------- dx
/ sqrt(1+(4x+5)**2) / sqrt(1+(4x+5)**2)
__________________
| u = 4x+5 |
| du = 4 dx |
|1/4 du = dx |
|__________________|
/ (4x+5) 3 / 1
| ----------------- dx + --- | ------------ du
/ sqrt(1+(4x+5)**2) 4 / sqrt(1+u**2)
*** int(1/sqrt(1+u**2) = sinh(u) ***
Voir fin de fichier.
= 1/4 (1+(4x+5)**2)**1/2 + 3/4 sinh(u) + c
= 1/4 (1+(4x+5)**2)**1/2 + 3/4 sinh(4x+5) + c
Remarque 2 :
/ (4x+5)**2
| ----------------- dx =
/ sqrt(1+(4x+5)**3)
____________________________
| u = 1+(4x+5)**3 |
| du =(3)(4x+5)**2(4) dx |
|1/12 du = (4x+5)**2 dx |
|____________________________|
/ 1
| ----------------- (4x+5)**2 dx =
/ sqrt(1+(4x+5)**3)
1 / 1
---- | ------ du =
12 / u**1/2
1 /
---- | u**(-1/2) du = 1/12 2 u**1/2 + c
12 /
= 1/6 (1+(4x+5)**3)**1/2 + c
Remarque 3 :
/ (4x+5)**(-1/2)
| --------------------- dx =
/ sqrt(1+(4x+5)**(1/2))
_____________________________________
| u = 1+(4x+5)**(1/2) |
| du = (1/2)(4x+5)**(-1/2)(4) dx |
|(1/2) du = (4x+5)**(-1/2) dx |
|_____________________________________|
/ 1
| --------------------- (4x+5)**(-1/2) dx =
/ sqrt(1+(4x+5)**(1/2))
1 / 1
--- | ------ du =
2 / u**1/2
1 /
--- | u**(-1/2) du = 1/2 2 u**1/2 + c
2 /
= [1+(4x+5)**(1/2)]**1/2 + c
...
*** int(1/sqrt(1+u**2) = sinh(u) ***