Mathc initiation/Fichiers c : c62ca
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ---------------------------------- */
/* save as c00a.c */
/* ---------------------------------- */
#include "x_hfile.h"
#include "fa.h"
/* ---------------------------------- */
int main(void)
{
double m = IntFlux_simpson_dxdy( M,N,P,
f,
u, v,LOOP,
ay,by,LOOP);
clrscrn();
printf(" Let S be the part of the graph of z = %s with z >= 0. \n\n", feq);
printf(" If F(x,y,z) = %si %sj %sk, find the flux of F through S\n\n\n",
Meq,Neq,Peq);
printf(" Consider f(x,y) = (%s)\n\n",feq);
printf(" n = grad(f(x,y)) / ||grad(f(x,y))||\n\n\n");
printf(" The flux of F through S is \n\n");
printf(" // \n");
printf(" || \n");
printf(" || F.n dS = %.3f \n" ,m);
printf(" || \n");
printf(" // \n");
printf(" S \n\n\n");
stop();
clrscrn();
printf(" / b / v(y)\n");
printf(" | | \n");
printf(" | | F.(-f_xi-f_yj+k) [f_x**2+f_y**2+1]**1/2 dx dy = %.3f\n",m);
printf(" | | ----------- \n");
printf(" | | [f_x**2+f_y**2+1]**1/2\n");
printf(" | | \n");
printf(" / a / u(y)\n\n\n");
printf(" / b / v(y)\n");
printf(" | | \n");
printf(" | | F.(-f_xi-f_yj+k) dx dy = %.3f\n",m);
printf(" | | \n");
printf(" / a / u(y)\n\n\n");
stop();
clrscrn();
printf(" / b / v(y)\n");
printf(" | | \n");
printf(" | | F.(-f_xi-f_yj+k) dx dy = %.3f\n",m);
printf(" | | \n");
printf(" / a / u(y)\n\n\n");
printf(" With.\n\n\n");
printf(" F : (x,y,z)-> %si %sj %sk \n\n", Meq,Neq,Peq);
printf(" f : (x,y)-> %s \n\n", feq);
printf(" v : (y)-> %s \n", veq);
printf(" u : (y)-> %s \n\n", ueq);
printf(" b = %+.1f\n a = %+.1f \n\n\n", by,ay);
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
Dans cette version nous utilisons l'algorithme simplifié qui calcule les intégrales de flux de surface.
/ b / v(y)
| |
| | F.(-f_xi-f_yj+k) dx dy = 890.585
| |
/ a / u(y)
With.
F : (x,y,z)-> + 3*xi + 3*yj + zk
f : (x,y)-> 9-x**2-y**2
u : (y)-> -sqrt(9-y**2)
v : (y)-> +sqrt(9-y**2)
a = -3.0 b = +3.0
Press return to continue.