Mathc initiation/Fichiers c : c59cb1
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c18b1.c |
---|
/* ---------------------------------- */
/* save as c18b1.c */
/* ---------------------------------- */
#include "x_hfile.h"
#include "fb.h"
/* ---------------------------------- */
int main(void)
{
double m = 0.;
clrscrn();
printf(" Let S be the part of the graph of z = %s with z >= 0. \n\n", feq);
printf(" Let C be the trace of S on the x-y-plane. \n\n");
printf(" Verify Stokes's theorem for the vector field, \n\n");
printf(" F(x,y,z) = %si %sj %sk\n\n\n\n\n",Meq,Neq,Peq);
printf(" Stoke's theorem. \n\n"
" / // \n"
" | || \n"
" O F.T ds = || (curl F).n dS \n"
" | || \n"
" / C // \n"
" S \n\n\n");
stop();
clrscrn();
printf(" // \n"
" || \n"
" || (curl F).n dS = \n"
" || \n"
" // \n"
" S \n\n\n"
" with F = Mi + Nj + Pk \n\n"
" (curl F) = [(P_y-N_z)i + (M_z-P_x)j + (N_x-M_y)k]\n\n\n\n"
" (-f_xi-f_yj+k) \n"
" n = ------------ \n"
" [(f_x)^2+(f_y)^2+1]^1/2 \n\n\n\n"
" dS = [(f_x)^2+(f_y)^2+1]^1/2 dA dA = dxdy\n\n");
stop();
clrscrn();
printf(" With the Stokes's theorem you find :\n\n\n");
printf(" F : (x,y,z)-> %si %sj %sk \n\n",Meq,Neq,Peq);
printf(" f : (x,y)-> %s \n\n", feq);
printf(" v : (y)-> %s \n", veq);
printf(" u : (y)-> %s \n\n", ueq);
printf(" b = %+.1f\n a = %+.1f\n\n",by,ay);
m = stokes_dxdy( M,N,P,
f,
u, v,LOOP,
ay,by,LOOP);
printf(" / b / v(y)\n"
" | | \n"
" | | (curl F).n [(f_x)^2+(f_y)^2+1]^1/2 dx dy = %.3f\n"
" | | \n"
" / a / u(y)\n\n\n",m);
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
Vérifions le théorème de Stoke partie 1.
Exemple de sortie écran :
Let S be the part of the graph of z = 4-x**2-y**2 with z >= 0.
Let C be the trace of S on the x-y-plane.
Verify Stokes's theorem for the vector field,
F(x,y,z) = + 2*yi + exp(z)j - atan(x)k
Stoke's theorem.
/ //
| ||
O F.T ds = || (curl F).n dS
| ||
/ C //
S
Press return to continue.
Exemple de sortie écran :
//
||
|| (curl F).n dS =
||
//
S
with F = Mi + Nj + Pk
(curl F) = [(P_y-N_z)i + (M_z-P_x)j + (N_x-M_y)k]
(-f_xi-f_yj+k)
n = ------------
[(f_x)^2+(f_y)^2+1]^1/2
dS = [(f_x)^2+(f_y)^2+1]^1/2 dA dA = dxdy
Press return to continue.
Exemple de sortie écran :
With the Stokes's theorem you find :
F : (x,y,z)-> + 2*yi + exp(z)j - atan(x)k
f : (x,y)-> 4-x**2-y**2
u : (y)-> -sqrt(4-y**2)
v : (y)-> +sqrt(4-y**2)
a = -2.0 b = +2.0
/ b / v(y)
| |
| | (curl F).n [(f_x)^2+(f_y)^2+1]^1/2 dx dy = -25.129
| |
/ a / u(y)
Press return to continue.