Mathc initiation/Fichiers c : c54cb
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c18byx.c |
---|
/* --------------------------------- */
/* save as c18byx.c */
/* --------------------------------- */
#include "x_hfile.h"
#include "fb.h"
/* --------------------------------- */
int main(void)
{
clrscrn();
printf(" The Green's theorem : \n\n");
printf(" ( (b (v(x) \n"
" int( M(x,y) dx + N(x,y) dy = int( int( (N_x - M_y) dy dx\n"
" (c (a (u(x) \n\n\n\n\n");
printf(" Use the Green's theorem to evaluate : \n\n");
printf(" ( (%.3f (%s \n",bx,veq);
printf(" int( %s dx + %s dy = int( int( %s dy dx\n",
Meq, Neq, N_x_mns_M_y_eq);
printf(" (c (%.3f (%s \n\n\n",ax,ueq);
stop();
clrscrn();
printf(" M(x,y) = %s \n", Meq);
printf(" N(x,y) = %s \n\n", Neq);
printf(" N_x_mns_M_y(x,y) = %s \n\n", N_x_mns_M_y_eq);
printf(" v(x) = %s \n", veq);
printf(" u(x) = %s \n\n", ueq);
printf(" With simpson_dydx().\n\n");
printf(" (%.1f (%s \n", bx, veq);
printf(" int( int( %s dy dx = %.5f\n", N_x_mns_M_y_eq,
simpson_dydx(N_x_mns_M_y, u,v,LOOP, ax,bx,LOOP) );
printf(" (%.1f (%s \n\n\n", ax, ueq);
printf(" With green_dydx().\n\n");
printf(" (%.1f (%s \n", bx, veq);
printf(" int( int( (N_x - M_y) dy dx = %.5f\n",
green_dydx(M,N, u,v,LOOP, ax,bx,LOOP) );
printf(" (%.1f (%s \n\n\n", ax, ueq);
stop();
return 0;
}
/* --------------------------------- */
/* --------------------------------- */
Nous avons une fonction pour calculer directement l'intégrale double de Green. Elle calcule elle même les dérivées partielles nécessaires.
Exemple de sortie écran :
The Green's theorem :
( (b (v(x)
int( M(x,y) dx + N(x,y) dy = int( int( (N_x - M_y) dy dx
(c (a (u(x)
Use the Green's theorem to evaluate :
( (1.000 (x**2
int( (x+y**2) dx + (1+x**2) dy = int( int( (2*x)-(2*y) dy dx
(c (0.000 (x**3
Press return to continue.
Exemple de sortie écran :
M(x,y) = (x+y**2)
N(x,y) = (1+x**2)
N_x_mns_M_y(x,y) = (2*x)-(2*y)
v(x) = x**2
u(x) = x**3
With simpson_dydx().
(1.0 (x**2
int( int( (2*x)-(2*y) dy dx = 0.04286
(0.0 (x**3
With green_dydx().
(1.0 (x**2
int( int( (N_x - M_y) dy dx = 0.04286
(0.0 (x**3
Press return to continue.