Mathc initiation/Fichiers c : c30cc
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c2c.c |
---|
/* --------------------------------- */
/* save as c2c.c */
/* --------------------------------- */
#include "x_hfile.h"
#include "fc.h"
/* --------------------------------- */
int main(void)
{
double i;
clrscrn();
printf(" Does lim x->0 %s exist ?\n\n", feq);
printf(" Substituing 0 for x gives 0/0.\n");
stop();
clrscrn();
printf(" f : x-> %s\n\n", feq);
printf(" Approximate f(x) by the right,\n");
printf(" for x near 0.\n\n");
for(i=1; i>0.1; i+=-.1)
printf(" f(%+.5f) = %5.6f || f(%+.6f) = %5.7f\n",
i*.0001, f(i*.0001),
i*.00001,f(i*.00001)
);
stop();
clrscrn();
printf(" f : x-> %s\n\n", feq);
printf(" Approximate f(x) by the left,\n");
printf(" for x near 0.\n\n");
for(i=-1; i<-0.1; i+=.1)
printf(" f(%+.5f) = %5.6f || f(%+.6f) = %5.7f\n",
i*.0001, f(i*.0001),
i*.00001,f(i*.00001)
);
stop();
clrscrn();
printf(" With the table we arrive at the following conjecture.\n\n");
printf(" lim x->0 %s = 0\n\n", feq);
stop();
return 0;
}
/* --------------------------------- */
On peut obtenir le même résultat en utilisant la Règle de L'Hôpital. [wikipedia].
(1-cos(x))'/(x)' = (sin(x)) / 1 et lim x->0 (sin(x)) = 0
Exemple de sortie écran :
Does lim x->0 (1-cos(x))/x exist ?
Substituing 0 for x gives 0/0.
Press return to continue.
Exemple de sortie écran :
f : x-> (1-cos(x))/x
Approximate f(x) by the right,
for x near 0.
f(+0.00010) = 0.000050 || f(+0.000010) = 0.0000050
f(+0.00009) = 0.000045 || f(+0.000009) = 0.0000045
f(+0.00008) = 0.000040 || f(+0.000008) = 0.0000040
f(+0.00007) = 0.000035 || f(+0.000007) = 0.0000035
f(+0.00006) = 0.000030 || f(+0.000006) = 0.0000030
f(+0.00005) = 0.000025 || f(+0.000005) = 0.0000025
f(+0.00004) = 0.000020 || f(+0.000004) = 0.0000020
f(+0.00003) = 0.000015 || f(+0.000003) = 0.0000015
f(+0.00002) = 0.000010 || f(+0.000002) = 0.0000010
f(+0.00001) = 0.000005 || f(+0.000001) = 0.0000005
Press return to continue.
Exemple de sortie écran :
f : x-> (1-cos(x))/x
Approximate f(x) by the left,
for x near 0.
f(-0.00010) = -0.000050 || f(-0.000010) = -0.0000050
f(-0.00009) = -0.000045 || f(-0.000009) = -0.0000045
f(-0.00008) = -0.000040 || f(-0.000008) = -0.0000040
f(-0.00007) = -0.000035 || f(-0.000007) = -0.0000035
f(-0.00006) = -0.000030 || f(-0.000006) = -0.0000030
f(-0.00005) = -0.000025 || f(-0.000005) = -0.0000025
f(-0.00004) = -0.000020 || f(-0.000004) = -0.0000020
f(-0.00003) = -0.000015 || f(-0.000003) = -0.0000015
f(-0.00002) = -0.000010 || f(-0.000002) = -0.0000010
f(-0.00001) = -0.000005 || f(-0.000001) = -0.0000005
Press return to continue.
Exemple de sortie écran :
With the table we arrive at the following conjecture.
lim x->0 (1-cos(x))/x = 0
Press return to continue.