Mathc gnuplot/Application : Sous tangente
Apparence
Préambule
[modifier | modifier le wikicode]La tangente dans Wikipedia.
Présentation
[modifier | modifier le wikicode]N'oubliez pas les fichiers *.h partagés et ceux de ce chapitre.
Dessiner
[modifier | modifier le wikicode]c01.c Calculer la longeur de la sous tangente. |
---|
/* ------------------------------------ */
/* Save as : c01.c */
/* ------------------------------------ */
#include "x_ahfile.h"
#include "f2.h"
/* ------------------------------------ */
int main(void)
{
double c = .5;
printf(" f : x-> %s \n", feq);
printf(" Df: x-> %s\n\n",Dfeq);
printf(" With c = %0.3f, the equation of the tangent is :\n\n"
" y = Df(c) (x-c) + f(c) = ",c);
eq_Tan(c,f,Df);
printf(" Find AM, the length of the under tangent.\n\n");
printf(" P(%5.3f, %5.3f) P(c, f(c)) \n",
c, f(c));
printf(" A(%5.3f, 0.000) A(c-f(c)/Df(c), 0)\n",
c-(f(c)/Df(c)));
printf(" M(%5.3f, 0.000) M( c, 0)\n\n\n", c);
printf(" AM = sqrt((f(c)**2)/(Df(c)**2)) = %6.3f\n\n\n",
sqrt(f(c)*f(c)*(1/(Df(c)*Df(c)))));
G_TanxM (i_WGnuplot(-2,4,-1,2),
c,
feq,f,Df);
printf(" load \"a_main.plt\" with gnuplot. \n\n"
" Press return to continue");
getchar();
return 0;
}
Le résultat.
f : x-> sin(x) Df: x-> (cos(x)) . With c = 0.500, the equation of the tangent is : . y = Df(c) (x-c) + f(c) = 0.878*x +0.041 . Find AM, the length of the under tangent. . P(0.500, 0.479) P(c, f(c)) A(-0.046, 0.000) A(c-f(c)/Df(c), 0) M(0.500, 0.000) M( c, 0) . AM = sqrt((f(c)**2)/(Df(c)**2)) = 0.546 . load "a_main.plt" with gnuplot.
Résultat dans gnuplot |
---|
Les fichiers h de ce chapitre
[modifier | modifier le wikicode]x_ahfile.h Appel des fichiers |
---|
/* ------------------------------------ */
/* Save as : x_ahfile.h */
/* ------------------------------------ */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <math.h>
#include <string.h>
/* ------------------------------------ */
#include "xplt.h"
/* ------------------------------------ */
#include "kg_tan.h"
#include "k_tan.h"
f2.h La fonction à dessiner |
---|
/* ------------------------------------ */
/* Save as : f2.h */
/* ------------ f --------------------- */
double f(
double x)
{
return( cos(x));
}
char feq[] = " cos(x)";
/* ------------ f' ------------------- */
double Df(
double x)
{
return( (-sin(x)) );
}
char Dfeq[] = " (-sin(x)) ";
k_tan.h Equation de la tangente |
---|
/* ------------------------------------ */
/* Save as : k_tan.h */
/* ------------------------------------
y = ax + b [P(xp,yp);(y-yp)=a(x-xp)]
a = f'(x)
b = y - ax
b = y - f'(x)x
b = f(x) - f'(x)x
x=c
a = f'(c)
b = f(c) - f'(c)c
------------------------------------ */
void eq_Tan(
double c,
double (*P_f)(double x),
double (*PDf)(double x)
)
{
printf(" %0.3f*x %+0.3f\n\n\n",
(*PDf)(c), (*P_f)(c) - (*PDf)(c)*c );
}
/* ------------------------------------ */
void eq_Tanf(
FILE *fp,
double c,
double (*P_f)(double x),
double (*PDf)(double x)
)
{
fprintf(fp," %0.3f*x %+0.3f\n\n\n",
(*PDf)(c), (*P_f)(c) - (*PDf)(c)*c );
}
kg_tan.h La fonction graphique |
---|
/* ------------------------------------ */
/* Save as : kg_tan.h */
/* ------------------------------------ */
void G_TanxM(
W_Ctrl w,
double c,
char fEQ[],
double (*P_f)(double x),
double (*PDf)(double x)
)
{
FILE *fp;
fp = fopen("a_main.plt","w");
fprintf(fp," set zeroaxis \n"
" plot [%0.3f:%0.3f] [%0.3f:%0.3f]\\\n"
" %s,\\\n"
" %0.6f*x %+0.6f,\\\n"
" \"a_px.plt\" with linesp lt 3,\\\n"
" \"a_am.plt\" with linesp lt 4 \n"
" reset",
w.xmini,w.xmaxi,w.ymini,w.ymaxi,fEQ,
((*PDf)(c)),(-(*PDf)(c)*c+(*P_f)(c)));
fclose(fp);
fp = fopen("a_px.plt", "w");
fprintf(fp," %0.6f %0.6f\n", c,((*P_f)(c)));
fprintf(fp," %0.6f 0.",
c-(((*P_f)(c))/((*PDf)(c))) );
fclose(fp);
fp = fopen("a_am.plt", "w");
fprintf(fp," %0.6f 0.\n",
c-(((*P_f)(c))/((*PDf)(c))));
fprintf(fp," %0.6f 0.", c);
fclose(fp);
}
Même exemple avec la fonction sin.
Résultat dans gnuplot |
---|