Mathc gnuplot/Application : Cercle de courbure d'une courbe
Apparence
Préambule
[modifier | modifier le wikicode]Présentation
[modifier | modifier le wikicode]N'oubliez pas les fichiers *.h partagés et ceux de ce chapitre.
Dessiner
[modifier | modifier le wikicode]c01.c Dessiner un cercle de courbure pour une fonction (f(t),g(t)) |
---|
/* ------------------------------------ */
/* Save as : c01.c */
/* ------------------------------------ */
#include "x_ahfile.h"
#include "fb.h"
/* ------------------------------------ */
int main(void)
{
double t = PI;
double e = .001;
char Name[FILENAME_MAX] = "a_circle.plt";
circle(Name,
1./fabs(Kt_2d(f,g,t,e)),
cx_2d(f,g,t,e),
cy_2d(f,g,t,e));
G_C_2d(i_WGnuplot(-4,8,-2,4),
i_time(0.,2*PI,.03),
f,g,t,
e);
printf(" The curvature K of a smooth parametric"
" curve C is :\n\n\n"
" K = |f' g'' - g' f''| / "
"[ (f')^2 - (g')^2 ]^(3/2)\n\n"
" If P(f(t),g(t)) is a point on the curve \n"
" at which K != 0. The point M(h,k)"
" is the center\n"
" of the cuvature for P if \n\n\n"
" h = f - g'[f'^2 + g'^2] / [f'g''-f''g']\n"
" k = g + f'[f'^2 + g'^2] / [f'g''-f''g']\n\n\n"
" The radius is r = 1/|K| \n\n\n"
" Open the file \"a_main.plt\" with Gnuplot.\n\n");
printf("\n Press return to continue");
getchar();
return 0;
}
Le résultat.
Résultat dans gnuplot |
---|
Résultat dans gnuplot |
---|
Résultat dans gnuplot |
---|
Les fichiers h de ce chapitre
[modifier | modifier le wikicode]x_ahfile.h Appel des fichiers |
---|
/* ------------------------------------ */
/* Save as : x_ahfile.h */
/* ------------------------------------ */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <math.h>
#include <string.h>
/* ------------------------------------ */
#include "xdef.h"
#include "xplt.h"
#include "xfx_x.h"
/* ------------------------------------ */
#include "kradius.h"
#include "kg_c.h"
#include "kcircle.h"
kradius.h Coordonnées du cercle |
---|
/* ------------------------------------ */
/* Save as : kradius.h */
/* ------------------------------------ */
double Kt_2d(
double (*P_f)(double t),
double (*P_g)(double t),
double t,
double e
)
{
double K;
double a;
double b;
a = fx_x((*P_f),t,e);
b = fx_x((*P_g),t,e);
K = fabs(a*fx_xx((*P_g),t,e)-b*fx_xx((*P_f),t,e))
/
pow(a*a+b*b,3./2.);
return(K);
}
/* ------------------------------------ */
double cx_2d(
double (*P_f)(double t),
double (*P_g)(double t),
double t,
double e
)
{
double Num,Den;
Num =( pow(fx_x((*P_f),t,e),2)
+pow(fx_x((*P_g),t,e),2)
)
*fx_x((*P_g),t,e);
Den = fx_x((*P_f),t,e)*fx_xx((*P_g),t,e)-
fx_x((*P_g),t,e)*fx_xx((*P_f),t,e);
return((*P_f)(t)-Num/Den);
}
/* ------------------------------------ */
double cy_2d(
double (*P_f)(double t),
double (*P_g)(double t),
double t,
double e
)
{
double Num,Den;
Num =( pow(fx_x((*P_f),t,e),2)
+pow(fx_x((*P_g),t,e),2)
)
*fx_x((*P_f),t,e);
Den = fx_x((*P_f),t,e)*fx_xx((*P_g),t,e)-
fx_x((*P_g),t,e)*fx_xx((*P_f),t,e);
return((*P_g)(t)+Num/Den);
}
fb.h La fonction à dessiner |
---|
/* ------------------------------------ */
/* Save as : fb.h */
/* ------------------------------------ */
double f(
double t)
{
return( 4+sin(2*t) );
}
char feq[] = "4+sin(2*t)";
/* ------------------------------------ */
double g(
double t)
{
return( 1-2*cos(3*t) );
}
char geq[] = "1-2*cos(3*t)";
kg_c.h La fonction graphique |
---|
/* ------------------------------------ */
/* Save as : kg_c.h */
/* ------------------------------------ */
void G_C_2d(
W_Ctrl W,
t_Ctrl T,
double (*P_f)(double x),
double (*P_g)(double x),
double x,
double e
)
{
FILE *fp;
double i;
fp = fopen("a_main.plt","w");
fprintf(fp," reset\n"
" set zeroaxis lt 8\n"
" set size ratio -1\n"
" set grid\n\n"
" plot [%0.3f:%0.3f] [%0.3f:%0.3f]\\\n"
" \"a_radius.plt\" with linespoints,\\\n"
" \"a_curve.plt\" with line,\\\n"
" \"a_circle.plt\" with line\n",
W.xmini,W.xmaxi,W.ymini,W.ymaxi);
fclose(fp);
fp = fopen("a_curve.plt","w");
for(i=T.mini; i<=T.maxi; i+=T.step)
fprintf(fp," %6.3f %6.3f\n",(*P_f)(i),(*P_g)(i));
fclose(fp);
fp = fopen("a_radius.plt","w");
fprintf(fp," %6.5f %6.5f\n",cx_2d((*P_f),(*P_g),x,e),
cy_2d((*P_f),(*P_g),x,e));
fprintf(fp," %6.5f %6.5f\n",(*P_f)(x),(*P_g)(x));
fclose(fp);
Pause();
}
kcircle.h Le cercle |
---|
/* ------------------------------------ */
/* Save as : kcircle.h */
/* ------------------------------------ */
void circle(
char Name[FILENAME_MAX],
double r,
double x,
double y
)
{
FILE *fp = fopen(Name,"w");
double t = 0.;
for(;t<2.01*PI;t+=.1)
fprintf(fp," %6.5f %6.5f\n",r*cos(t)+x,r*sin(t)+y);
fclose(fp);
}