Aller au contenu

Mathc complexes/a48

Un livre de Wikilivres.



Valeurs propres


Installer et compiler ces fichiers dans votre répertoire de travail.


c00c.c
/* ------------------------------------ */
/*  Save as :   c00c.c                  */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define FACTOR_E    +1.E-2         
#define RCA          RC3  
/* ------------------------------------ */       
/* ------------------------------------ */
void fun(void)
{                          
double **A = rcsymmetric_mZ(i_mZ(RCA,RCA),99);

double **V =                i_mZ(RCA,RCA);
double **cV_T =             i_mZ(RCA,RCA);
double **T   =              i_mZ(RCA,RCA);

double **EigsValue  =       i_mZ(RCA,RCA);

  clrscrn();
  printf(" Copy/Past into the octave windows \n\n\n");
  p_Octave_mZ(A,"a",P0,P0);  
  printf(" [V, E]  = eigs (a,%d) \n\n\n",RCA);
  stop();
  
  clrscrn();
  printf(" A :");
  p_mZ(A, S8,P0, S6,P0, C10); 

/* V and cV_T*/  
  eigs_V_mZ(A,V,FACTOR_E);
  printf(" V :");
  pE_mZ(V, S12,P4, S12,P4, C4);
  printf(" cV_T :");
  pE_mZ(ctranspose_mZ(V,cV_T), S12,P4, S12,P4, C4);
  stop();

  clrscrn();   
/* EigsValue : cV_T * A * V */   
  mul_mZ(cV_T,A,T);
  mul_mZ(T,V,EigsValue); 
  printf(" EigsValue :");
  p_mZ(EigsValue, S12,P4, S8,P4, C10); 
 
  printf(" A :");
  p_mZ(A, S7,P0, S6,P0, C10);  

/* A = V * EigsValue * cV_T*/  
  mul_mZ(V,EigsValue,T);
  mul_mZ(T,cV_T,A);          
  printf(" A = V * EigsValue * cV_T");
  p_mZ(A, S7,P0, S6,P0, C10); 
          
  f_mZ(A);
  f_mZ(V);  
  f_mZ(cV_T);  
  f_mZ(T);  
  f_mZ(EigsValue);
}
/* ------------------------------------ */
int main(void)
{
time_t t;

  srand(time(&t));

do
{
    fun();
    
} while(stop_w());

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Avec les matrices réelles nous avons calculer les vecteurs et valeurs propres des matrices symétriques. Avec les matrices complexes nous allons calculer les vecteurs et valeurs propres des matrices symétriques conjuguées.


Contrôle du facteur :

  • FACTOR_E ..... +1.E-1 ......... -9 < x < 9
  • FACTOR_E ..... +1.E-2 ....... -99 < x < 99
  • FACTOR_E ..... +1.E-3 ..... -999 < x < 999

Nous allons étudier une des propriétés des valeurs propres et des vecteurs propres :

              A = V * EigsValue * cV_T


Exemple de sortie écran :
 ------------------------------------
 Copy/Past into the octave windows 


 a=[
+8128+0*i,+579-2487*i,+2510+5026*i;
+579+2487*i,+19730+0*i,-4076+8806*i;
+2510-5026*i,-4076-8806*i,+14851+0*i]

 [V, E]  = eigs (a,3) 


 Press return to continue. 


 ------------------------------------
 A :
   +8128    +0i     +579 -2487i    +2510 +5026i 
    +579 +2487i   +19730    +0i    -4076 +8806i 
   +2510 -5026i    -4076 -8806i   +14851    +0i 

 V :
 +1.4651e-01 +2.1021e-01i  +9.2892e-02 +6.3973e-01i  -2.1433e-01 -6.8595e-01i 
 -3.3053e-01 +6.6289e-01i  +3.5438e-01 -4.8622e-01i  +6.2130e-02 -2.9235e-01i 
 +6.2103e-01 +0.0000e+00i  +4.6916e-01 +0.0000e+00i  +6.2786e-01 -2.6140e-17i 

 cV_T :
 +1.4651e-01 -2.1021e-01i  -3.3053e-01 -6.6289e-01i  +6.2103e-01 -0.0000e+00i 
 +9.2892e-02 -6.3973e-01i  +3.5438e-01 +4.8622e-01i  +4.6916e-01 -0.0000e+00i 
 -2.1433e-01 +6.8595e-01i  +6.2130e-02 +2.9235e-01i  +6.2786e-01 +2.6140e-17i 

 Press return to continue. 


 ------------------------------------
 EigsValue :
 +28713.2549 +0.0000i      -0.0000 -0.0000i      +0.0000 -0.0000i 
     -0.0000 +0.0000i   +9996.1416 +0.0000i      +0.0000 -0.0000i 
     +0.0000 -0.0000i      +0.0000 +0.0000i   +3999.6035 -0.0000i 

 A :
  +8128    +0i    +579 -2487i   +2510 +5026i 
   +579 +2487i  +19730    +0i   -4076 +8806i 
  +2510 -5026i   -4076 -8806i  +14851    +0i 

 A = V * EigsValue * cV_T
  +8128    -0i    +579 -2487i   +2510 +5026i 
   +579 +2487i  +19730    -0i   -4076 +8806i 
  +2510 -5026i   -4076 -8806i  +14851    +0i 


 Press return to continue
 Press X      to stop