Mathc complexes/a229
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R4
#define CA C5
#define Cb C1
/* ------------------------------------ */
#define RB R1 /* B : a basis for the rows space of A */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
-8*2,-4*2, +7*2,-7*2, +6*2,+7*2, -9*2,-4*2, +6*2,-1*2, 0,0,
-8*3,-4*3, +7*3,-7*3, +6*3,+7*3, -9*3,-4*3, +6*3,-1*3, 0,0,
-8*4,-4*4, +7*4,-7*4, +6*4,+7*4, -9*4,-4*4, +6*4,-1*4, 0,0,
-8*7,-4*7, +7*7,-7*7, +6*7,+7*7, -9*7,-4*7, +6*7,-1*7, 0,0
};
double **Ab = ca_A_mZ(ab, i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A = c_Ab_A_mZ(Ab, i_mZ(RA,CA));
double **b = c_Ab_b_mZ(Ab, i_mZ(RA,Cb));
double **B = i_mZ(RB,CA);
clrscrn();
printf("Basis for a Row Space by Row Reduction :\n\n");
printf(" A :");
p_mZ(A, S3,P0, S3,P0, C8);
printf(" b :");
p_mZ(b, S3,P0, S3,P0, C8);
printf(" Ab :");
p_mZ(Ab, S3,P0, S3,P0, C8);
stop();
clrscrn();
printf(" The nonzero rows vectors of Ab without b\n"
" form a basis for the row space of A \n\n"
" Ab :");
printf(" gj_PP_mZ(Ab) :");
p_mZ(gj_PP_mZ(Ab), S7,P3, S7,P3, C5);
c_Ab_A_mZ(Ab,A);
c_r_mZ(A,R1,B,R1);
printf(" B : Is a basis for a Row Space of A by Row Reduction");
p_mZ(B, S7,P3, S7,P3, C5);
stop();
f_mZ(Ab);
f_mZ(A);
f_mZ(b);
f_mZ(B);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.
Exemple de sortie écran :
Basis for a Row Space by Row Reduction :
A :
-16 -8i +14-14i +12+14i -18 -8i +12 -2i
-24-12i +21-21i +18+21i -27-12i +18 -3i
-32-16i +28-28i +24+28i -36-16i +24 -4i
-56-28i +49-49i +42+49i -63-28i +42 -7i
b :
+0 +0i
+0 +0i
+0 +0i
+0 +0i
Ab :
-16 -8i +14-14i +12+14i -18 -8i +12 -2i +0 +0i
-24-12i +21-21i +18+21i -27-12i +18 -3i +0 +0i
-32-16i +28-28i +24+28i -36-16i +24 -4i +0 +0i
-56-28i +49-49i +42+49i -63-28i +42 -7i +0 +0i
Press return to continue.
The nonzero rows vectors of Ab without b
form a basis for the row space of A
Ab : gj_PP_mZ(Ab) :
+1.000 +0.000i -0.350 +1.050i -0.950 -0.400i +1.100 -0.050i -0.550 +0.400i
+0.000 +0.000i +0.000 +0.000i -0.000 -0.000i +0.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i -0.000 -0.000i +0.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i -0.000 -0.000i +0.000 +0.000i +0.000 +0.000i
-0.000 +0.000i
+0.000 +0.000i
+0.000 +0.000i
+0.000 +0.000i
B : Is a basis for a Row Space of A by Row Reduction
+1.000 +0.000i -0.350 +1.050i -0.950 -0.400i +1.100 -0.050i -0.550 +0.400i
Press return to continue.