Mathc complexes/a228
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R4
#define CA C5
#define Cb C1
/* ------------------------------------ */
#define RB R3 /* B : a basis for the rows space of A */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
+2, -1, -6, +2, -7, -6, -6, +6, +7, +8, 0,0,
+9, -9, -2, +6, +1, -6, +2, +5, -7, -1, 0,0,
+2*3,-1*3, -6*3,+2*3, -7*3,-6*3, -6*3,+6*3, +7*3,+8*3, 0,0,
-1, -3, +3, +7, +8, +7, +6, -7, -9, +7, 0,0
};
double **Ab = ca_A_mZ(ab, i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A = c_Ab_A_mZ(Ab, i_mZ(RA,CA));
double **b = c_Ab_b_mZ(Ab, i_mZ(RA,Cb));
double **B = i_mZ(RB,CA);
clrscrn();
printf("Basis for a Row Space by Row Reduction :\n\n");
printf(" A :");
p_mZ(A, S3,P0, S3,P0, C8);
printf(" b :");
p_mZ(b, S3,P0, S3,P0, C8);
printf(" Ab :");
p_mZ(Ab, S3,P0, S3,P0, C8);
stop();
clrscrn();
printf(" The nonzero rows vectors of Ab without b\n"
" form a basis for the row space of A \n\n"
" Ab :");
printf(" gj_PP_mZ(Ab) :");
p_mZ(gj_PP_mZ(Ab), S7,P3, S7,P3, C5);
c_Ab_A_mZ(Ab,A);
c_r_mZ(A,R1,B,R1);
c_r_mZ(A,R2,B,R2);
c_r_mZ(A,R3,B,R3);
printf(" B : Is a basis for a Row Space of A by Row Reduction");
p_mZ(B, S7,P3, S7,P3, C5);
stop();
f_mZ(Ab);
f_mZ(A);
f_mZ(b);
f_mZ(B);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.
Exemple de sortie écran :
Basis for a Row Space by Row Reduction :
A :
+2 -1i -6 +2i -7 -6i -6 +6i +7 +8i
+9 -9i -2 +6i +1 -6i +2 +5i -7 -1i
+6 -3i -18 +6i -21-18i -18+18i +21+24i
-1 -3i +3 +7i +8 +7i +6 -7i -9 +7i
b :
+0 +0i
+0 +0i
+0 +0i
+0 +0i
Ab :
+2 -1i -6 +2i -7 -6i -6 +6i +7 +8i +0 +0i
+9 -9i -2 +6i +1 -6i +2 +5i -7 -1i +0 +0i
+6 -3i -18 +6i -21-18i -18+18i +21+24i +0 +0i
-1 -3i +3 +7i +8 +7i +6 -7i -9 +7i +0 +0i
Press return to continue.
The nonzero rows vectors of Ab without b
form a basis for the row space of A
Ab : gj_PP_mZ(Ab) :
+1.000 +0.000i -0.444 +0.222i +0.389 -0.278i -0.167 +0.389i -0.333 -0.444i
+0.000 -0.000i +1.000 +0.000i +1.158 +1.189i +1.277 -0.682i -1.137 -1.841i
+0.000 +0.000i +0.000 +0.000i +1.000 +0.000i -0.045 -0.955i -1.274 +1.014i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +0.000 +0.000i
+0.000 +0.000i
+0.000 -0.000i
+0.000 +0.000i
+0.000 +0.000i
B : Is a basis for a Row Space of A by Row Reduction
+1.000 +0.000i -0.444 +0.222i +0.389 -0.278i -0.167 +0.389i -0.333 -0.444i
+0.000 -0.000i +1.000 +0.000i +1.158 +1.189i +1.277 -0.682i -1.137 -1.841i
+0.000 +0.000i +0.000 +0.000i +1.000 +0.000i -0.045 -0.955i -1.274 +1.014i
Press return to continue.