Mathc complexes/a228
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00c.c |
---|
/* ------------------------------------ */
/* Save as : c00c.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R4
#define CA C5
#define Cb C1
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
+2*2,-9*2, -5*2,-3*2, -3*2,-8*2, +2*2,-4*2, -8*2,-9*2, 0,0,
-3, -3, +4, +3, +1, -9, -9, +2, +1, -7, 0,0,
+2*3,-9*3, -5*3,-3*3, -3*3,-8*3, +2*3,-4*3, -8*3,-9*3, 0,0,
+2*7,-9*7, -5*7,-3*7, -3*7,-8*7, +2*7,-4*7, -8*7,-9*7, 0,0
};
double **Ab = ca_A_mZ(ab,i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A = c_Ab_A_mZ(Ab,i_mZ(RA,CA));
double **b = c_Ab_b_mZ(Ab,i_mZ(RA,Cb));
double **B = i_mZ(RA-R2,CA);
clrscrn();
printf("Basis for a Row Space by Row Reduction :\n\n");
printf(" A :");
p_mZ(A, S3,P0, S3,P0, C8);
printf(" b :");
p_mZ(b, S3,P0, S3,P0, C8);
printf(" Ab :");
p_mZ(Ab, S3,P0, S3,P0, C8);
stop();
clrscrn();
printf(" The nonzero rows vectors of Ab without b\n"
" form a basis for the row space of A \n\n"
" Ab :");
printf(" gj_PP_mZ(Ab) :");
p_mZ(gj_PP_mZ(Ab), S8,P4, S8,P4, C4);
c_Ab_A_mZ(Ab,A);
c_r_mZ(A,R1,B,R1);
c_r_mZ(A,R2,B,R2);
printf(" B : Is a basis for a Row Space of A by Row Reduction");
p_mZ(B, S8,P4, S8,P4, C4);
stop();
f_mZ(Ab);
f_mZ(A);
f_mZ(B);
f_mZ(b);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.
Exemple de sortie écran :
------------------------------------
Basis for a Row Space by Row Reduction :
A :
+4-18i -10 -6i -6-16i +4 -8i -16-18i
-3 -3i +4 +3i +1 -9i -9 +2i +1 -7i
+6-27i -15 -9i -9-24i +6-12i -24-27i
+14-63i -35-21i -21-56i +14-28i -56-63i
b :
+0 +0i
+0 +0i
+0 +0i
+0 +0i
Ab :
+4-18i -10 -6i -6-16i +4 -8i -16-18i +0 +0i
-3 -3i +4 +3i +1 -9i -9 +2i +1 -7i +0 +0i
+6-27i -15 -9i -9-24i +6-12i -24-27i +0 +0i
+14-63i -35-21i -21-56i +14-28i -56-63i +0 +0i
Press return to continue.
------------------------------------
The nonzero rows vectors of Ab without b
form a basis for the row space of A
Ab : gj_PP_mZ(Ab) :
+1.0000 -0.0000i +0.2000 -0.6000i +0.7765 -0.5059i +0.4706 +0.1176i
+0.0000 +0.0000i +1.0000 +0.0000i +0.3684 -1.3830i -0.9965 +0.8685i
+0.0000 +0.0000i +0.0000 +0.0000i +0.0000 +0.0000i -0.0000 -0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i +0.0000 +0.0000i -0.0000 -0.0000i
+0.7647 -1.0588i +0.0000 +0.0000i
+0.6159 -1.4048i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i
B : Is a basis for a Row Space of A by Row Reduction
+1.0000 -0.0000i +0.2000 -0.6000i +0.7765 -0.5059i +0.4706 +0.1176i
+0.0000 +0.0000i +1.0000 +0.0000i +0.3684 -1.3830i -0.9965 +0.8685i
+0.7647 -1.0588i
+0.6159 -1.4048i
Press return to continue.