Mathc complexes/a227
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
![]() |
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R4
#define CA C5
#define Cb C1
/* ------------------------------------ */
#define RB R2 /* B : a basis for the rows space of A */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
+2*2,-9*2, -5*2,-3*2, -3*2,-8*2, +2*2,-4*2, -8*2,-9*2, 0,0,
-3, -3, +4, +3, +1, -9, -9, +2, +1, -7, 0,0,
+2*3,-9*3, -5*3,-3*3, -3*3,-8*3, +2*3,-4*3, -8*3,-9*3, 0,0,
+2*7,-9*7, -5*7,-3*7, -3*7,-8*7, +2*7,-4*7, -8*7,-9*7, 0,0
};
double **Ab = ca_A_mZ(ab, i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A = c_Ab_A_mZ(Ab, i_mZ(RA,CA));
double **b = c_Ab_b_mZ(Ab, i_mZ(RA,Cb));
double **B = i_mZ(RB,CA);
clrscrn();
printf("Basis for a Row Space by Row Reduction :\n\n");
printf(" A :");
p_mZ(A, S3,P0, S3,P0, C8);
printf(" b :");
p_mZ(b, S3,P0, S3,P0, C8);
printf(" Ab :");
p_mZ(Ab, S3,P0, S3,P0, C8);
stop();
clrscrn();
printf(" The nonzero rows vectors of Ab without b\n"
" form a basis for the row space of A \n\n"
" Ab :");
printf(" gj_PP_mZ(Ab) :");
p_mZ(gj_PP_mZ(Ab), S7,P3, S7,P3, C5);
c_Ab_A_mZ(Ab,A);
c_r_mZ(A,R1,B,R1);
c_r_mZ(A,R2,B,R2);
printf(" B : Is a basis for a Row Space of A by Row Reduction");
p_mZ(B, S7,P3, S7,P3, C5);
stop();
f_mZ(Ab);
f_mZ(A);
f_mZ(b);
f_mZ(B);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.
Exemple de sortie écran :
Basis for a Row Space by Row Reduction :
A :
+4-18i -10 -6i -6-16i +4 -8i -16-18i
-3 -3i +4 +3i +1 -9i -9 +2i +1 -7i
+6-27i -15 -9i -9-24i +6-12i -24-27i
+14-63i -35-21i -21-56i +14-28i -56-63i
b :
+0 +0i
+0 +0i
+0 +0i
+0 +0i
Ab :
+4-18i -10 -6i -6-16i +4 -8i -16-18i +0 +0i
-3 -3i +4 +3i +1 -9i -9 +2i +1 -7i +0 +0i
+6-27i -15 -9i -9-24i +6-12i -24-27i +0 +0i
+14-63i -35-21i -21-56i +14-28i -56-63i +0 +0i
Press return to continue.
The nonzero rows vectors of Ab without b
form a basis for the row space of A
Ab : gj_PP_mZ(Ab) :
+1.000 -0.000i +0.200 -0.600i +0.776 -0.506i +0.471 +0.118i +0.765 -1.059i
+0.000 +0.000i +1.000 +0.000i +0.368 -1.383i -0.997 +0.869i +0.616 -1.405i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i -0.000 -0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i -0.000 -0.000i +0.000 +0.000i
+0.000 +0.000i
+0.000 +0.000i
+0.000 +0.000i
+0.000 +0.000i
B : Is a basis for a Row Space of A by Row Reduction
+1.000 -0.000i +0.200 -0.600i +0.776 -0.506i +0.471 +0.118i +0.765 -1.059i
+0.000 +0.000i +1.000 +0.000i +0.368 -1.383i -0.997 +0.869i +0.616 -1.405i
Press return to continue.