Aller au contenu

Mathc complexes/a186

Un livre de Wikilivres.

Application


Installer et compiler ce fichier dans votre répertoire de travail.

c00a.c
/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "w_a.h" 
/* ------------------------------------ */
/* ------------------------------------ */
#define  TAB  C3
/* ------------------------------------ */
#define   RU  R3
#define   CU  C1
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{

double u[TAB][RU*C2]={{+2,3, +2,5, +6,1},
	                  {+1,2, +5,2, +3,3},
	                  {+4,1, +3,2, +2,3}};
double **U[TAB];

double **B    =           i_mZ(RU,RU);

double w[RU*C2]  = {+2,3, +2,5, +6,1};
double **W    = ca_A_mZ(w,i_mZ(RU,C1));

double **BW   =           i_mZ(RU,C1);

double **InvB =           i_mZ(RU,RU);

int c;

  clrscrn();
  
  for(c=C0; c<TAB; c++)
     {
       U[c] = ca_A_mZ( u[c],i_mZ(RU,C1));
       c_c_mZ(U[c],C1, B,c+C1);
      }
      
  printf(" Three U vectors in the Standard Basis \n\n"  
         "     U[0]       U[1]      U[2] :");	     
  p_mZ(B,S6,P0,S3,P0,C10);


  printf(" The W vector in the standard basis : ");      
  p_mZ(W,S6,P0,S3,P0,C10);  
  
  printf(" Find the coordinate of W into the U basis");
  mul_mZ(inv_mZ(B,InvB),W,BW);
  p_mZ(BW,S6,P0,S3,P0,C10);
  
  stop();
  
  for(c=C0; c<TAB; c++)
  
       f_mZ(U[c]); 
       
  f_mZ(B); 
  f_mZ(InvB);  
  f_mZ(W);
  f_mZ(BW);  
}
/* ------------------------------------ */
int main(void)
{
  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Les coordonnées de W dans la base U.


Exemple de sortie écran :

 -------------------------------


 Three U vectors in the Standard Basis 

     U[0]       U[1]      U[2] :
    +2 +3i     +1 +2i     +4 +1i 
    +2 +5i     +5 +2i     +3 +2i 
    +6 +1i     +3 +3i     +2 +3i 

 The W vector in the standard basis : 
    +2 +3i 
    +2 +5i 
    +6 +1i 

 Find the coordinate of W into the U basis
    +1 -0i 
    +0 +0i 
    +0 +0i 

 Press return to continue.