x × x = . . . {\displaystyle x\times x=...\,}
x + x = . . . {\displaystyle x+x=...\,}
x × x = x 2 {\displaystyle x\times x=x^{2}\,}
x + x = 2 x {\displaystyle x+x=2x\,}
2 x + 3 x = . . . {\displaystyle 2x+3x=...\,}
− 2 x + 3 x = . . . {\displaystyle -2x+3x=...\,}
2 x − 3 x = . . . {\displaystyle 2x-3x=...\,}
− 2 x − 3 x = . . . {\displaystyle -2x-3x=...\,}
2 x + 3 x = 5 x {\displaystyle 2x+3x=5x\,}
− 2 x + 3 x = 1 x = x {\displaystyle -2x+3x=1x=x\,}
2 x − 3 x = − 1 x = − x {\displaystyle 2x-3x=-1x=-x\,}
− 2 x − 3 x = − 5 x {\displaystyle -2x-3x=-5x\,}
2 × x × 3 = . . . {\displaystyle 2\times x\times 3=...\,}
2 × x × ( − 3 ) = . . . {\displaystyle 2\times x\times (-3)=...\,}
2 × x × 3 x = . . . {\displaystyle 2\times x\times 3x=...\,}
2 × x × ( − 3 x ) = . . . {\displaystyle 2\times x\times (-3x)=...\,}
2 × x × 3 = 2 × 3 × x = 6 × x = 6 x {\displaystyle 2\times x\times 3=2\times 3\times x=6\times x=6x\,}
2 × x × ( − 3 ) = 2 × ( − 3 ) × x = − 6 × x = − 6 x {\displaystyle 2\times x\times (-3)=2\times (-3)\times x=-6\times x=-6x\,}
2 × x × 3 x = 2 × 3 × x × x = 6 × x 2 = 6 x 2 {\displaystyle 2\times x\times 3x=2\times 3\times x\times x=6\times x^{2}=6x^{2}\,}
2 × x × ( − 3 x ) = 2 × ( − 3 ) × x × x = − 6 × x 2 = − 6 x 2 {\displaystyle 2\times x\times (-3x)=2\times (-3)\times x\times x=-6\times x^{2}=-6x^{2}\,}
( 2 x ) 2 = . . . {\displaystyle (2x)^{2}=...\,}
( − x ) 2 = . . . {\displaystyle (-x)^{2}=...\,}
3 ( 5 x ) 2 = . . . {\displaystyle 3(5x)^{2}=...\,}
− ( 3 x ) 2 = . . . {\displaystyle -(3x)^{2}=...\,}
( 2 x ) 2 = 2 2 × x 2 = 4 x 2 {\displaystyle (2x)^{2}=2^{2}\times x^{2}=4x^{2}\,} Il faut utiliser la règle : ( a × b ) 2 = a 2 × b 2 {\displaystyle (a\times b)^{2}=a^{2}\times b^{2}\,}
( − x ) 2 = ( − 1 × x ) 2 = ( − 1 ) 2 × x 2 = 1 × x 2 = x 2 {\displaystyle (-x)^{2}=(-1\times x)^{2}=(-1)^{2}\times x^{2}=1\times x^{2}=x^{2}\,}
3 ( 5 x ) 2 = 3 × 5 2 × x 2 = 3 × 25 × x 2 = 75 x 2 . . . {\displaystyle 3(5x)^{2}=3\times 5^{2}\times x^{2}=3\times 25\times x^{2}=75x^{2}...\,}
− ( 3 x ) 2 = − 3 2 × x 2 = − 9 x 2 {\displaystyle -(3x)^{2}=-3^{2}\times x^{2}=-9x^{2}\,}